(1)
解:因?yàn)橹本€$l:y = kx + 3$與$y$軸交于點(diǎn)$B,$所以$B(0,3),$即$OB = 3。$
又因?yàn)?\frac{OB}{OA}=\frac{3}{4},$所以$OA = 4,$即$A(4,0)。$
因?yàn)辄c(diǎn)$A$在直線$l$上,所以$4k+3 = 0,$$4k=-3,$解得$k=-\frac{3}{4}。$
所以直線$l$的表達(dá)式為$y = -\frac{3}{4}x+3。$
(2)
解:過點(diǎn)$P$作$PC\perp y$軸于點(diǎn)$C。$
因?yàn)?S_{\triangle BOP}=\frac{1}{2}OB\cdot PC = 6,$$OB = 3,$所以$\frac{1}{2}\times3\times PC = 6,$$PC = 4。$
所以點(diǎn)$P$的橫坐標(biāo)為$4$或$-4。$
因?yàn)辄c(diǎn)$P$為直線$l$上的一個(gè)動(dòng)點(diǎn)且不與點(diǎn)$A,$$B$重合,當(dāng)$x = 4$時(shí),$y=-\frac{3}{4}\times4 + 3=0$(與$A$點(diǎn)重合,舍去);
當(dāng)$x=-4$時(shí),$y=-\frac{3}{4}\times(-4)+3 = 6。$
所以點(diǎn)$P$的坐標(biāo)為$(-4,6)$時(shí),$\triangle BOP$的面積是$6。$
(3)
解:存在。因?yàn)?OM\perp AB$于$M,$$AB=\sqrt{OB^{2}+OA^{2}}=\sqrt{3^{2}+4^{2}} = 5,$$\angle OMP = 90^{\circ},$$OM=\frac{OA\cdot OB}{AB}=\frac{4\times3}{5}=\frac{12}{5}。$
以$O,$$P,$$Q$為頂點(diǎn)的三角形與$\triangle OMP$全等時(shí),$\angle OQP = 90^{\circ}。$
①當(dāng)$\triangle OMP\cong\triangle PQO$時(shí),$PQ = OM=\frac{12}{5},$即點(diǎn)$P$的橫坐標(biāo)為$-\frac{12}{5}$或$\frac{12}{5}。$
當(dāng)$x = -\frac{12}{5}$時(shí),$y=-\frac{3}{4}\times(-\frac{12}{5})+3=\frac{9}{5}+3=\frac{24}{5};$
當(dāng)$x=\frac{12}{5}$時(shí),$y=-\frac{3}{4}\times\frac{12}{5}+3=-\frac{9}{5}+3=\frac{6}{5}。$
所以點(diǎn)$P$的坐標(biāo)為$(-\frac{12}{5},\frac{24}{5})$或$(\frac{12}{5},\frac{6}{5})。$
②當(dāng)$\triangle OMP\cong\triangle OQP$時(shí),$OQ = OM=\frac{12}{5},$即點(diǎn)$P,$點(diǎn)$Q$的縱坐標(biāo)為$-\frac{12}{5}$或$\frac{12}{5}。$
當(dāng)$y = -\frac{12}{5}$時(shí),$-\frac{3}{4}x+3=-\frac{12}{5},$$-\frac{3}{4}x=-\frac{12}{5}-3=-\frac{12}{5}-\frac{15}{5}=-\frac{27}{5},$$x=\frac{36}{5};$
當(dāng)$y=\frac{12}{5}$時(shí),$-\frac{3}{4}x+3=\frac{12}{5},$$-\frac{3}{4}x=\frac{12}{5}-3=\frac{12}{5}-\frac{15}{5}=-\frac{3}{5},$$x=\frac{4}{5}。$
所以點(diǎn)$P$的坐標(biāo)為$(\frac{36}{5},-\frac{12}{5})$或$(\frac{4}{5},\frac{12}{5})。$
綜上所述,符合條件的點(diǎn)$P$的坐標(biāo)為$(-\frac{12}{5},\frac{24}{5}),$$(\frac{12}{5},\frac{6}{5}),$$(\frac{36}{5},-\frac{12}{5}),$$(\frac{4}{5},\frac{12}{5})。$