亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第152頁

第152頁

信息發(fā)布者:
30
40
解:
(2)甲貨車從$A$地出發(fā)途經(jīng)配貨站時,停下來卸貨,半小時后繼續(xù)駛往$B$地,由圖象可知$E(4,105)$和$F(5.5,225),$設(shè)$y_{EF}=kx + b(4\leqslant x\leqslant5.5),$
$\begin{cases}4k + b = 105\\5.5k + b = 225\end{cases},$
用$5.5k + b = 225$減去$4k + b = 105$得:
$(5.5k + b)-(4k + b)=225 - 105,$
$5.5k + b - 4k - b = 120,$
$1.5k = 120,$
解得$k = 80,$
把$k = 80$代入$4k + b = 105$得$320 + b = 105,$
$b = 105 - 320=-215,$
$\therefore$甲貨車距$A$地的距離$y(km)$與行駛時間$x(h)$之間的函數(shù)表達(dá)式是$y = 80x-215(4\leqslant x\leqslant5.5)。$
(3)
經(jīng)過$1.5$h或$\frac{45}{14}$h或$5$h,甲、乙兩貨車與配貨站的距離相等。
解:
(1)當(dāng)$0\leqslant x\leqslant2000$時,設(shè)$y = k'x,$根據(jù)題意可得,$2000k' = 30000,$解得$k' = 15,$$\therefore y = 15x。$
當(dāng)$x\gt2000$時,設(shè)$y = kx + b,$根據(jù)題意可得$\begin{cases}2000k + b = 30000\\4000k + b = 56000\end{cases},$
用$4000k + b = 56000$減去$2000k + b = 30000$得:
$(4000k + b)-(2000k + b)=56000 - 30000,$
$4000k + b - 2000k - b = 26000,$
$2000k = 26000,$
解得$k = 13,$
把$k = 13$代入$2000k + b = 30000$得$26000 + b = 30000,$
$b = 30000 - 26000 = 4000,$
$\therefore y = 13x + 4000。$
$\therefore y=\begin{cases}15x(0\leqslant x\leqslant2000)\\13x + 4000(x\gt2000)\end{cases}。$
(2)根據(jù)題意可知,購進(jìn)甲種產(chǎn)品$(6000 - x)$千克,$\because1600\leqslant x\leqslant4000,$
當(dāng)$1600\leqslant x\leqslant2000$時,$w=(12 - 8)(6000 - x)+(18 - 15)x=-4x + 24000+3x=-x + 24000,$
$\because -1\lt0,$$\therefore$當(dāng)$x = 1600$時,$w$的最大值為$-1×1600 + 24000 = 22400$(元)。
當(dāng)$2000\lt x\leqslant4000$時,$w=(12 - 8)(6000 - x)+18x-(13x + 4000)=4(6000 - x)+18x-13x - 4000=24000-4x + 18x-13x - 4000=x + 20000,$
$\because1\gt0,$$\therefore$當(dāng)$x = 4000$時,$w$的最大值為$4000 + 20000 = 24000$(元)。
綜上,$w=\begin{cases}-x + 24000(1600\leqslant x\leqslant2000)\\x + 20000(2000\lt x\leqslant4000)\end{cases},$當(dāng)購進(jìn)甲種產(chǎn)品$2000$千克,乙種產(chǎn)品$4000$千克時,利潤最大為$24000$元。
(3)根據(jù)題意可知,降價后,$w=(12 - 8 - a)(6000 - x)+(18 - 2a)x-(13x + 4000)=(4 - a)(6000 - x)+(18 - 2a)x-13x - 4000=24000-4x-6000a+ax + 18x-2ax-13x - 4000=(1 - a)x + 20000-6000a,$
當(dāng)$x = 4000$時,$w$取得最大值,$\therefore(1 - a)×4000 + 20000-6000a\geqslant15000,$
$4000-4000a + 20000-6000a\geqslant15000,$
$-10000a\geqslant15000 - 4000 - 20000,$
$-10000a\geqslant - 9000,$
解得$a\leqslant0.9。$
$\therefore a$的最大值為$0.9。$