解:
(1)當(dāng)$0\leqslant x\leqslant2000$時,設(shè)$y = k'x,$根據(jù)題意可得,$2000k' = 30000,$解得$k' = 15,$$\therefore y = 15x。$
當(dāng)$x\gt2000$時,設(shè)$y = kx + b,$根據(jù)題意可得$\begin{cases}2000k + b = 30000\\4000k + b = 56000\end{cases},$
用$4000k + b = 56000$減去$2000k + b = 30000$得:
$(4000k + b)-(2000k + b)=56000 - 30000,$
$4000k + b - 2000k - b = 26000,$
$2000k = 26000,$
解得$k = 13,$
把$k = 13$代入$2000k + b = 30000$得$26000 + b = 30000,$
$b = 30000 - 26000 = 4000,$
$\therefore y = 13x + 4000。$
$\therefore y=\begin{cases}15x(0\leqslant x\leqslant2000)\\13x + 4000(x\gt2000)\end{cases}。$
(2)根據(jù)題意可知,購進(jìn)甲種產(chǎn)品$(6000 - x)$千克,$\because1600\leqslant x\leqslant4000,$
當(dāng)$1600\leqslant x\leqslant2000$時,$w=(12 - 8)(6000 - x)+(18 - 15)x=-4x + 24000+3x=-x + 24000,$
$\because -1\lt0,$$\therefore$當(dāng)$x = 1600$時,$w$的最大值為$-1×1600 + 24000 = 22400$(元)。
當(dāng)$2000\lt x\leqslant4000$時,$w=(12 - 8)(6000 - x)+18x-(13x + 4000)=4(6000 - x)+18x-13x - 4000=24000-4x + 18x-13x - 4000=x + 20000,$
$\because1\gt0,$$\therefore$當(dāng)$x = 4000$時,$w$的最大值為$4000 + 20000 = 24000$(元)。
綜上,$w=\begin{cases}-x + 24000(1600\leqslant x\leqslant2000)\\x + 20000(2000\lt x\leqslant4000)\end{cases},$當(dāng)購進(jìn)甲種產(chǎn)品$2000$千克,乙種產(chǎn)品$4000$千克時,利潤最大為$24000$元。
(3)根據(jù)題意可知,降價后,$w=(12 - 8 - a)(6000 - x)+(18 - 2a)x-(13x + 4000)=(4 - a)(6000 - x)+(18 - 2a)x-13x - 4000=24000-4x-6000a+ax + 18x-2ax-13x - 4000=(1 - a)x + 20000-6000a,$
當(dāng)$x = 4000$時,$w$取得最大值,$\therefore(1 - a)×4000 + 20000-6000a\geqslant15000,$
$4000-4000a + 20000-6000a\geqslant15000,$
$-10000a\geqslant15000 - 4000 - 20000,$
$-10000a\geqslant - 9000,$
解得$a\leqslant0.9。$
$\therefore a$的最大值為$0.9。$