解: (2) 設(shè)$AB$所在直線的函數(shù)表達(dá)式為$y = kx + b,$把$\begin{cases}x = 0,y = 210\\x = 3,y = 0\end{cases}$代入得$\begin{cases}b = 210\\3k + b = 0\end{cases},$
將$b = 210$代入$3k + b = 0,$得$3k+210 = 0,$$3k=-210,$$k=-70。$
所以$AB$所在直線的函數(shù)表達(dá)式為$y=-70x + 210(0\leq x\leq3)。$
因為貨車速度為$70km/h,$所以$BC$所在直線的函數(shù)表達(dá)式為$y = 70(x - 3)=70x - 210(3\lt x\leq5)。$
因為轎車速度為$105km/h,$$\frac{210}{105}=2(h),$所以$D(2,210),$$E(3,210),$$OD$所在直線的函數(shù)表達(dá)式為$y = 105x(0\leq x\leq2)。$
設(shè)$EF$所在直線的函數(shù)表達(dá)式為$y = mx + n,$把$\begin{cases}x = 3,y = 210\\x = 5,y = 0\end{cases}$代入得$\begin{cases}3m + n = 210\\5m + n = 0\end{cases},$
由$5m + n = 0$減去$3m + n = 210$可得:$(5m + n)-(3m + n)=0 - 210,$$5m + n - 3m - n=-210,$$2m=-210,$$m=-105。$
把$m=-105$代入$3m + n = 210,$得$3\times(-105)+n = 210,$$-315 + n = 210,$$n = 525。$
所以$EF$所在直線的函數(shù)表達(dá)式為$y=-105x + 525(3\leq x\leq5)。$
由$\begin{cases}y=-70x + 210\\y = 105x\end{cases},$得t$-70x + 210 = 105x,$$105x+70x = 210,$$175x = 210,$$x = 1.2,$$y = 105\times1.2 = 126,$所以$G(1.2,126)。$
由$\begin{cases}y = 70x - 210\\y=-105x + 525\end{cases},$得$70x - 210=-105x + 525,$$70x+105x = 525 + 210,$$175x = 735,$$x = 4.2,$$y=-105\times4.2 + 525=-441+525 = 84,$所以$H(4.2,84)。$
點$G$的實際意義為轎車與貨車出發(fā)$1.2h$時,在南京與蘇州之間,距離蘇州$126km$的地方相遇;點$H$的實際意義為轎車與貨車出發(fā)$4.2h$時,轎車在南京與蘇州之間,貨車在蘇州與上海之間,兩車都距離蘇州$84km。$
(3) 由題意可知,南京到蘇州$210km,$蘇州到上海$2\times70 = 140(km)。$