解:
(1)當$x = 0$時,$y=-\frac{3}{4}x + 6 = 6,$所以$A(0,6)。$
當$y = 0$時,$-\frac{3}{4}x + 6 = 0,$
$-\frac{3}{4}x=-6,$解得$x = 8,$所以$B(8,0)。$
(2)過點$C$作$CH\perp x$軸于點$H。$
因為$CD = CB,$所以$DH = BH=\frac{1}{2}BD=\frac{1}{2}\times[8 - (-4)] = 6,$
$OH = OB - BH = 8 - 6 = 2。$
當$x = 2$時,$y=-\frac{3}{4}x + 6=-\frac{3}{4}\times2 + 6=\frac{9}{2},$所以點$C$的坐標為$(2,\frac{9}{2})。$
(3)因為$\triangle ACE$與$\triangle DOE$的面積相等,所以$\triangle AOC$與$\triangle COD$的面積相等,連接$AD,$所以$AD// OC。$
設(shè)$AD$所在直線的表達式為$y = kx + b,$把$A(0,6),$$D(-4,0)$分別代入,得$\begin{cases}b = 6\\-4k + b = 0\end{cases},$
將$b = 6$代入$-4k + b = 0,$得$-4k+6 = 0,$$4k = 6,$解得$k=\frac{3}{2},$
所以直線$AD$的表達式為$y=\frac{3}{2}x + 6。$
直線$OC$的表達式為$y=\frac{3}{2}x。$
解方程組$\begin{cases}y=-\frac{3}{4}x + 6\\y=\frac{3}{2}x\end{cases},$
將$y=\frac{3}{2}x$代入$y=-\frac{3}{4}x + 6$得:$\frac{3}{2}x=-\frac{3}{4}x + 6,$
$\frac{3}{2}x+\frac{3}{4}x = 6,$$\frac{6}{4}x+\frac{3}{4}x = 6,$$\frac{9}{4}x = 6,$$x=\frac{8}{3},$
$y=\frac{3}{2}\times\frac{8}{3}=4,$所以$C(\frac{8}{3},4)。$
設(shè)$P(t,-\frac{3}{4}t + 6)。$
當點$P$在點$C$下方時,$S_{\triangle PCD}=S_{\triangle BCD}-S_{\triangle PBD},$
因為$\triangle DOC$與$\triangle DPC$的面積相等,
$\frac{1}{2}\times12\times4-\frac{1}{2}\times12\times(-\frac{3}{4}t + 6)=8,$
$24 - 6(-\frac{3}{4}t + 6)=8,$
$24+\frac{9}{2}t - 36 = 8,$
$\frac{9}{2}t - 12 = 8,$
$\frac{9}{2}t = 20,$解得$t=\frac{40}{9},$
此時$P$坐標為$(\frac{40}{9},\frac{8}{3})。$
當點$P$在點$C$上方時,$S_{\triangle PCD}=S_{\triangle PBD}-S_{\triangle CBD},$
因為$\triangle DOC$與$\triangle DPC$的面積相等,
$\frac{1}{2}\times12\times(-\frac{3}{4}t + 6)-\frac{1}{2}\times12\times4 = 8,$
$6(-\frac{3}{4}t + 6)-24 = 8,$
$-\frac{9}{2}t + 36 - 24 = 8,$
$-\frac{9}{2}t + 12 = 8,$
$-\frac{9}{2}t=-4,$解得$t=\frac{8}{9},$
此時點$P$坐標為$(\frac{8}{9},\frac{16}{3})。$
綜上所述,點$P$坐標為$(\frac{40}{9},\frac{8}{3})$或$(\frac{8}{9},\frac{16}{3})。$