解: (1) 把$P(-1,a)$代入$y = -x + 1,$得$a=-(-1)+1 = 2,$則點$P$坐標為$(-1,2)。$把$A(-2,0),$$P(-1,2)$代入$y = kx + b,$得$\begin{cases}0 = -2k + b\\2 = -k + b\end{cases},$
由$2 = -k + b$減去$0 = -2k + b$可得:$2-0=(-k + b)-(-2k + b),$即$2=-k + b + 2k - b,$$k = 2。$
把$k = 2$代入$0 = -2k + b,$得$0=-2\times2 + b,$$b = 4。$
所以直線$l_1$的表達式為$y = 2x + 4。$
(2) 方程組$\begin{cases}y = kx + b\\y = -x + 1\end{cases}$的解為$\begin{cases}x = -1\\y = 2\end{cases}。$
(3) 因為$y = -x + 1$交$x$軸于點$B,$交$y$軸于點$C,$令$y = 0,$則$0=-x + 1,$$x = 1,$所以$B(1,0);$令$x = 0,$則$y = 1,$所以$C(0,1)。$
四邊形$PAOC$的面積$=S_{\triangle ABP}-S_{\triangle BOC}=\frac{1}{2}\times(1 + 2)\times2-\frac{1}{2}\times1\times1=\frac{1}{2}\times3\times2-\frac{1}{2}\times1\times1 = 3-\frac{1}{2}=\frac{5}{2}。$