$解: (1) 因?yàn)辄c(diǎn)A,B的坐標(biāo)分別為(4,1),(4,5),點(diǎn)D為平面鏡的中點(diǎn),所以D(4,3)。將C(-1,0),D(4,3)坐標(biāo)分別代入y = mx + n中,得\begin{cases}4m + n = 3\\-m + n = 0\end{cases},$
$ \begin{aligned} 4m + n-(-m + n)&=3 - 0 \\ 4m + n + m - n&=3 \\ 5m&=3 \\ m&=\frac{3}{5} \\ \end{aligned}$
$ 把m = \frac{3}{5}代入-m + n = 0得:-\frac{3}{5}+n = 0,n = \frac{3}{5},所以CD所在直線的表達(dá)式為y = \frac{3}{5}x+\frac{3}{5}。$
$ (2) 當(dāng)入射光線y = mx + n(m\neq0,x\geqslant - 1)經(jīng)過C(-1,0),A(4,1)時(shí),有\(zhòng)begin{cases}4m + n = 1\\-m + n = 0\end{cases},$
$ \begin{aligned} 4m + n-(-m + n)&=1 - 0 \\ 4m + n + m - n&=1 \\ 5m&=1 \\ m&=\frac{1}{5} \\ \end{aligned}$
$ 把m = \frac{1}{5}代入-m + n = 0得:-\frac{1}{5}+n = 0,n = \frac{1}{5};$
$ 當(dāng)入射光線y = mx + n(m\neq0,x\geqslant - 1)經(jīng)過C(-1,0),B(4,5)時(shí),有\(zhòng)begin{cases}4m + n = 5\\-m + n = 0\end{cases},$
$ \begin{aligned} 4m + n-(-m + n)&=5 - 0 \\ 4m + n + m - n&=5 \\ 5m&=5 \\ m&=1 \\ \end{aligned}$
$ 把m = 1代入-m + n = 0得:-1 + n = 0,n = 1,所以當(dāng)入射光線y = mx + n(m\neq0,x\geqslant - 1)與平面鏡AB有公共點(diǎn)時(shí),n的取值范圍為\frac{1}{5}\leqslant n\leqslant1。$
(3) 共8個(gè)。