$解: (2)存在。 $
因?yàn)?S_{四邊形ABOP}=2S_{\triangle AOP},$所以$3 - m = 2\times(-m),$
移項(xiàng)得$2m - m=-3,$解得$m=-3。$
所以存在點(diǎn)$P,$使得四邊形$ABOP$的面積為$\triangle AOP$面積的$2$倍,$P(-3,\frac{1}{2})。$
(3)因?yàn)?C(3,4),$所以$OC=\sqrt{3^{2}+4^{2}} = 5。$
當(dāng)$OC = OP = 5$時(shí),點(diǎn)$P$的坐標(biāo)為$(5,0)$或$(-5,0);$
當(dāng)$CO = CP$時(shí),過點(diǎn)$C$作$CH\perp OP$于點(diǎn)$H,$$OH = HP = 3,$點(diǎn)$P$的坐標(biāo)為$(6,0);$
當(dāng)$PC = PO$時(shí),設(shè)點(diǎn)$P$的坐標(biāo)為$(t,0),$則$PC^{2}=(t - 3)^{2}+4^{2},$$t^{2}=(t - 3)^{2}+4^{2},$
展開得$t^{2}=t^{2}-6t + 9+16,$
移項(xiàng)得$6t=25,$解得$t=\frac{25}{6},$點(diǎn)$P$的坐標(biāo)為$(\frac{25}{6},0)。$
綜上,點(diǎn)$P$的坐標(biāo)為$(5,0)$或$(-5,0)$或$(6,0)$或$(\frac{25}{6},0)。$