證明:因?yàn)?S_{\triangle ABC}=\frac{1}{2}ab=\frac{1}{2}ch,$所以$ab = ch,$則$h=\frac{ab}{c}。$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{b^{2}+a^{2}}{a^{2}b^{2}},$
在$Rt\triangle ABC$中,由勾股定理$a^{2}+b^{2}=c^{2},$
所以$\frac{b^{2}+a^{2}}{a^{2}b^{2}}=\frac{c^{2}}{a^{2}b^{2}}=(\frac{c}{ab})^{2},$
又因?yàn)?h = \frac{ab}{c},$所以$(\frac{c}{ab})^{2}=(\frac{1}{h})^{2}=\frac{1}{h^{2}},$即$\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{h^{2}}。$