(1)證明:
因?yàn)?AC\perp BD,$$\angle CAD = 45^{\circ},$
所以$AC = DC,$$\angle ACB=\angle DCE = 90^{\circ}。$
在$Rt\triangle ABC$與$Rt\triangle DEC$中,
$\begin{cases}AC = DC\\AB = DE\end{cases},$
所以$Rt\triangle ABC\cong Rt\triangle DEC(HL),$
所以$\angle BAC=\angle EDC。$
因?yàn)?\angle AEF+\angle BAC = 90^{\circ},$$\angle CED=\angle AEF,$$\angle CED+\angle EDC = 90^{\circ},$
所以$\angle AFE = 90^{\circ},$即$DF\perp AB。$
(2)證明:
由$Rt\triangle ABC\cong Rt\triangle DEC,$得$BC = EC = a,$$AB = DE = c,$$AC = CD = b。$
因?yàn)?S_{\triangle BCE}+S_{\triangle ACD}=S_{\triangle ABD}-S_{\triangle ABE},$
所以$\frac{1}{2}a^2+\frac{1}{2}b^2=\frac{1}{2}c\cdot DF-\frac{1}{2}c\cdot EF=\frac{1}{2}c\cdot(DF - EF)=\frac{1}{2}c\cdot DE=\frac{1}{2}c^2,$
所以$a^2 + b^2=c^2。$