證明: (1)$\because \angle ABC = \angle ADC = 90^{\circ}$
$M,$$N$分別是$AC,$$BD$的中點,$\therefore$在$Rt\triangle ABC$中,$BM=\frac{1}{2}AC,$在$Rt\triangle ACD$中,$DM=\frac{1}{2}AC,$$\therefore BM = DM。$又$\because N$是$BD$的中點,$\therefore MN\perp BD。$
(2)$\triangle MBD$是等腰直角三角形。理由:$\because M$是$AC$的中點,$\therefore AM=\frac{1}{2}AC = BM,$$\therefore \angle BAM = \angle ABM,$$\therefore \angle BMC = 2\angle BAM。$同理可得$\angle DMC = 2\angle DAM。$又$\because \angle BAD = 45^{\circ},$$\therefore \angle BMD = \angle BMC + \angle DMC = 2(\angle BAM + \angle DAM)=2\angle BAD = 90^{\circ}。$又$\because BM = DM,$$\therefore \triangle MBD$是等腰直角三角形。