亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第56頁

第56頁

信息發(fā)布者:
證明: (1)$\because \angle ABC = \angle ADC = 90^{\circ}$
$M,$$N$分別是$AC,$$BD$的中點,$\therefore$在$Rt\triangle ABC$中,$BM=\frac{1}{2}AC,$在$Rt\triangle ACD$中,$DM=\frac{1}{2}AC,$$\therefore BM = DM。$又$\because N$是$BD$的中點,$\therefore MN\perp BD。$
(2)$\triangle MBD$是等腰直角三角形。理由:$\because M$是$AC$的中點,$\therefore AM=\frac{1}{2}AC = BM,$$\therefore \angle BAM = \angle ABM,$$\therefore \angle BMC = 2\angle BAM。$同理可得$\angle DMC = 2\angle DAM。$又$\because \angle BAD = 45^{\circ},$$\therefore \angle BMD = \angle BMC + \angle DMC = 2(\angle BAM + \angle DAM)=2\angle BAD = 90^{\circ}。$又$\because BM = DM,$$\therefore \triangle MBD$是等腰直角三角形。


證明: 由題圖③,得$CE$是$\triangle AEF$的中線,$\therefore S_{\triangle ACE}=S_{\triangle EFC}。$$\because \angle ACB = 90^{\circ},$$\therefore \angle BCF = 90^{\circ}。$$\because \triangle CBE\cong\triangle CAD,$$\therefore CE = CD,$$\angle ECB = \angle DCA,$$\therefore 90^{\circ}-\angle ECB = 90^{\circ}-\angle DCA,$即$\angle ECF = \angle DCB。$又$\because AC = BC,$$AC = CF,$$\therefore CF = CB。$在$\triangle ECF$和$\triangle DCB$中,$\begin{cases}CF = CB \\ \angle ECF = \angle DCB \\ CE = CD\end{cases},$$\therefore \triangle ECF\cong\triangle DCB(SAS)。$$\therefore S_{\triangle ECF}=S_{\triangle DCB},$$\therefore S_{\triangle CAE}=S_{\triangle CDB}。$
證明: (1)$\because DE\perp AB,$$\angle ACB = 90^{\circ},$$\therefore \angle AED = \angle AEF = \angle ACB = 90^{\circ}。$在$Rt\triangle ACF$與$Rt\triangle AEF$中,$\begin{cases}AC = AE \\ AF = AF\end{cases},$$\therefore Rt\triangle ACF\cong Rt\triangle AEF(HL),$$\therefore CF = EF。$在$Rt\triangle ADE$與$Rt\triangle ABC$中,$\begin{cases}AD = AB \\ AE = AC\end{cases},$$\therefore Rt\triangle ADE\cong Rt\triangle ABC(HL),$$\therefore DE = BC。$$\because DF = DE + EF,$$\therefore DF = BC + CF。$
(2)$BC = CF + DF。$證明如下:連接$AF,$在$Rt\triangle ABC$與$Rt\triangle ADE$中,$\begin{cases}AB = AD \\ AC = AE\end{cases},$$\therefore Rt\triangle ABC\cong Rt\triangle ADE(HL),$$\therefore BC = DE。$$\because \angle ACB = 90^{\circ},$$\therefore \angle ACF = 90^{\circ}=\angle AED。$在$Rt\triangle ACF$與$Rt\triangle AEF$中,$\begin{cases}AC = AE \\ AF = AF\end{cases},$$\therefore Rt\triangle ACF\cong Rt\triangle AEF(HL),$$\therefore CF = EF。$$\because DE = EF + DF,$$\therefore BC = CF + DF。$