證明: (1)$\because AB = AC,$$\angle BAC = 120^{\circ},$$D$是$BC$的中點(diǎn),$\therefore \angle BAD = \angle CAD=\frac{1}{2}\angle BAC = 60^{\circ},$即$AD$平分$\angle BAC。$$\because DM\perp AB,$$\therefore \angle AMD = 90^{\circ},$$\therefore \angle ADM = 90^{\circ}-\angle MAD = 90^{\circ}-60^{\circ}=30^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle ADN = \angle MDN - \angle MDA = 60^{\circ}-30^{\circ}=30^{\circ},$$\therefore \angle AND = 180^{\circ}-\angle NAD - \angle ADN = 90^{\circ},$$\therefore DN\perp AC。$$\because AD$平分$\angle BAC,$$\therefore DM = DN。$
(2)相等,理由如下:如圖①,取$AB$的中點(diǎn)$E,$連接$DE,$$\because AB = AC,$$\angle BAC = 120^{\circ},$$D$是$BC$的中點(diǎn),$\therefore AD\perp BC,$$\angle BAD = \angle CAD = 60^{\circ},$$\therefore \angle ADB = 90^{\circ},$$\therefore DE = AE = BE,$$\therefore \triangle AED$是等邊三角形,$\therefore DE = AD,$$\angle AED = \angle ADE = 60^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle EDM + \angle MDA = \angle ADN + \angle MDA,$$\therefore \angle EDM = \angle ADN。$在$\triangle EDM$和$\triangle ADN$中,$\begin{cases}\angle MED = \angle NAD \\ DE = AD \\ \angle EDM = \angle ADN\end{cases},$$\therefore \triangle EDM\cong\triangle ADN(ASA),$$\therefore DM = DN。$
(3)$BM + NC=\frac{3}{2}AC。$
證明:分兩種情況討論:
①如圖①,當(dāng)點(diǎn)$N$在線段$AC$上時(shí),由
(2)可知$\triangle EDM\cong\triangle ADN,$$\therefore EM = AN。$$\because AM + EM = AE=\frac{1}{2}AB,$$\therefore AM + AN=\frac{1}{2}AB。$$\because AB = AC,$$\therefore (AC - BM)+(AC - NC)=\frac{1}{2}AC,$$\therefore BM + NC=\frac{3}{2}AC。$
②如圖②,當(dāng)點(diǎn)$N$在$CA$的延長線上時(shí),由
(2)可知$\triangle ADE$是等邊三角形,$\angle AED = \angle ADE = 60^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle MDN - \angle NDE = \angle ADE - \angle NDE,$即$\angle EDM = \angle ADN。$$\because \angle EMD + \angle EDM = \angle AED = 60^{\circ},$$\angle N + \angle ADN = \angle CAD = 60^{\circ},$$\therefore \angle EMD = \angle N。$在$\triangle ADN$和$\triangle EDM$中,$\begin{cases}\angle N = \angle EMD \\ \angle ADN = \angle EDM \\ AD = ED\end{cases},$$\therefore \triangle ADN\cong\triangle EDM(AAS),$$\therefore AN = EM。$$\because BM + ME = BE=\frac{1}{2}AB=\frac{1}{2}AC,$$\therefore BM + AN=\frac{1}{2}AC,$$\therefore BM + AN + AC=\frac{3}{2}AC,$即$BM + NC=\frac{3}{2}AC。$
綜上所述,$BM + NC=\frac{3}{2}AC。$