亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第57頁

第57頁

信息發(fā)布者:
證明: (1)$\because AB = AC,$$\angle BAC = 120^{\circ},$$D$是$BC$的中點(diǎn),$\therefore \angle BAD = \angle CAD=\frac{1}{2}\angle BAC = 60^{\circ},$即$AD$平分$\angle BAC。$$\because DM\perp AB,$$\therefore \angle AMD = 90^{\circ},$$\therefore \angle ADM = 90^{\circ}-\angle MAD = 90^{\circ}-60^{\circ}=30^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle ADN = \angle MDN - \angle MDA = 60^{\circ}-30^{\circ}=30^{\circ},$$\therefore \angle AND = 180^{\circ}-\angle NAD - \angle ADN = 90^{\circ},$$\therefore DN\perp AC。$$\because AD$平分$\angle BAC,$$\therefore DM = DN。$
(2)相等,理由如下:如圖①,取$AB$的中點(diǎn)$E,$連接$DE,$$\because AB = AC,$$\angle BAC = 120^{\circ},$$D$是$BC$的中點(diǎn),$\therefore AD\perp BC,$$\angle BAD = \angle CAD = 60^{\circ},$$\therefore \angle ADB = 90^{\circ},$$\therefore DE = AE = BE,$$\therefore \triangle AED$是等邊三角形,$\therefore DE = AD,$$\angle AED = \angle ADE = 60^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle EDM + \angle MDA = \angle ADN + \angle MDA,$$\therefore \angle EDM = \angle ADN。$在$\triangle EDM$和$\triangle ADN$中,$\begin{cases}\angle MED = \angle NAD \\ DE = AD \\ \angle EDM = \angle ADN\end{cases},$$\therefore \triangle EDM\cong\triangle ADN(ASA),$$\therefore DM = DN。$
(3)$BM + NC=\frac{3}{2}AC。$
證明:分兩種情況討論:
①如圖①,當(dāng)點(diǎn)$N$在線段$AC$上時(shí),由
(2)可知$\triangle EDM\cong\triangle ADN,$$\therefore EM = AN。$$\because AM + EM = AE=\frac{1}{2}AB,$$\therefore AM + AN=\frac{1}{2}AB。$$\because AB = AC,$$\therefore (AC - BM)+(AC - NC)=\frac{1}{2}AC,$$\therefore BM + NC=\frac{3}{2}AC。$
②如圖②,當(dāng)點(diǎn)$N$在$CA$的延長線上時(shí),由
(2)可知$\triangle ADE$是等邊三角形,$\angle AED = \angle ADE = 60^{\circ}。$$\because \angle MDN = 60^{\circ},$$\therefore \angle MDN - \angle NDE = \angle ADE - \angle NDE,$即$\angle EDM = \angle ADN。$$\because \angle EMD + \angle EDM = \angle AED = 60^{\circ},$$\angle N + \angle ADN = \angle CAD = 60^{\circ},$$\therefore \angle EMD = \angle N。$在$\triangle ADN$和$\triangle EDM$中,$\begin{cases}\angle N = \angle EMD \\ \angle ADN = \angle EDM \\ AD = ED\end{cases},$$\therefore \triangle ADN\cong\triangle EDM(AAS),$$\therefore AN = EM。$$\because BM + ME = BE=\frac{1}{2}AB=\frac{1}{2}AC,$$\therefore BM + AN=\frac{1}{2}AC,$$\therefore BM + AN + AC=\frac{3}{2}AC,$即$BM + NC=\frac{3}{2}AC。$
綜上所述,$BM + NC=\frac{3}{2}AC。$
證明: (1)如圖①,作$CM\perp BD$于點(diǎn)$M,$$CN\perp AD,$交$AD$的延長線于點(diǎn)$N。$$\because \triangle ABC$是等邊三角形,$\therefore AC = BC,$$\angle BCA = \angle ADB = 60^{\circ}。$$\because \angle BGC = \angle AGD,$$\therefore \angle CBM = \angle CAD。$在$\triangle BCM$和$\triangle ACN$中,$\begin{cases}\angle BMC = \angle ANC \\ \angle CBM = \angle CAN \\ BC = AC\end{cases},$$\therefore \triangle BCM\cong\triangle ACN(AAS),$$\therefore CM = CN。$又$\because CM\perp BD,$$CN\perp AD,$$\therefore \angle MDC = \angle NDC = 60^{\circ},$$\therefore \angle ADB = \angle ADF = 60^{\circ},$$\therefore DA$平分$\angle BDF。$
(2)設(shè)$\angle ABD = \alpha,$則$\angle ACD = 2\alpha,$$\therefore \angle BCD = 60^{\circ}+2\alpha,$$\therefore \angle BDC = 60^{\circ}-\alpha=\angle DBC,$$\therefore BC = DC,$$\angle F = 60^{\circ}-\alpha-\alpha = 60^{\circ}-2\alpha。$$\because FH = FC,$$\therefore \angle FHC = \angle FCH = 60^{\circ}+\alpha。$$\therefore \angle HCB = \angle BCD - \angle FCH=\alpha。$$\therefore \angle HCB = \angle ABD。$在$\triangle ABG$和$\triangle BCH$中,$\begin{cases}\angle BAG = \angle CBH \\ AB = BC \\ \angle ABG = \angle BCH\end{cases},$$\therefore \triangle ABG\cong\triangle BCH(ASA),$$\therefore BH = AG。$
(3)由
(2)知$\angle ACK = 60^{\circ}-2\alpha,$$\angle KGC = \angle BDC + \angle ACD = 60^{\circ}+\alpha,$$\therefore$在$\triangle GCK$中,$\angle GKC = 180^{\circ}-\angle ACK - \angle KGC = 60^{\circ}+\alpha=\angle KGC。$$\therefore CG = CK。$$\because \triangle BCH$翻折得到$\triangle NCH,$$\therefore CN = BC = AC = AB,$$HN = HB,$$\angle N = \angle ABC = 60^{\circ}。$$\because CN - CK = CA - CG,$即$NK = AG。$如圖②,連接$HK,$$\therefore BH = HN = NK = AG,$$\therefore \triangle NHK$是等邊三角形,$\therefore HK = KN = BH,$$\therefore \angle HBK = \angle HKB。$在$BK$上截取$BP = KM,$在$\triangle BHP$和$\triangle KHM$中,$\begin{cases}BH = KH \\ \angle HBP = \angle HKM \\ BP = KM\end{cases},$$\therefore \triangle BHP\cong\triangle KHM(SAS),$$\therefore HP = HM,$$BP = KM = 6,$$\therefore PM = 8 - 6 = 2。$$\because \angle DMH = \angle BDC + \angle DCH,$$\therefore \angle DMH = 60^{\circ}-\alpha+2\alpha+60^{\circ}-\alpha = 120^{\circ},$$\therefore \angle HMB = 60^{\circ},$$\therefore \triangle HMP$是等邊三角形,$\therefore HM = PM = 2。$