證明: (1)$\because \angle A = 30^{\circ},$$AD = AC,$$\therefore \angle ADC=\angle ACD=\dfrac{1}{2}\times(180^{\circ}-30^{\circ}) = 75^{\circ}.$又$\because \angle ACB = 90^{\circ},$$\therefore \angle ABC = 60^{\circ}.$$\because BE$平分$\angle ABC,$$\therefore \angle ABE = 30^{\circ},$$\therefore \angle DMB=\angle ADC-\angle ABE = 75^{\circ}-30^{\circ}=45^{\circ};$
(2)$\because \angle ABE=\angle CBE = 30^{\circ},$$\therefore BE = 2CE = 2.$$\because \angle ABE=\angle A = 30^{\circ},$$\therefore AE = BE = 2,$$\therefore AC = 3,$$\therefore AD = AC = 3;$
(3)$\because CH\perp BE,$$\therefore \angle CHB = 90^{\circ}.$$\because \angle HMC=\angle DMB = 45^{\circ},$$\therefore \angle HCM=\angle HMC = 45^{\circ},$$\therefore HM = HC.$$\because \angle CHB = 90^{\circ},$$\angle EBC=\dfrac{1}{2}\angle ABC = 30^{\circ},$$\therefore HC = HM=\dfrac{1}{2}BC.$$\because \angle A = 30^{\circ},$$\angle ACB = 90^{\circ},$$\therefore BC=\dfrac{1}{2}AB,$$\therefore AB = 2BC = 4MH.$