證明: (1)如圖①,過點$A$作$AG\perp OF$于點$G,$$AH\perp OE$于點$H,$則$\angle AHO=\angle AGO = 90^{\circ}.$$\because \angle EOF = 120^{\circ},$$\therefore \angle HAG = 60^{\circ}=\angle BAC,$$\therefore \angle HAG-\angle BAH=\angle BAC-\angle BAH,$即$\angle BAG=\angle CAH.$$\because OM$平分$\angle EOF,$$AG\perp OF,$$AH\perp OE,$$\therefore AG = AH.$在$\triangle BAG$和$\triangle CAH$中,$\begin{cases}\angle AGB=\angle AHC \\ AG = AH \\ \angle BAG=\angle CAH\end{cases},$$\therefore \triangle BAG\cong \triangle CAH(ASA),$$\therefore AB = AC;$
(2)
(1)中的結(jié)論還成立.證明如下:如圖②,過點$A$作$AG\perp OF$于點$G,$$AH\perp OE$于點$H,$則$\angle AHC=\angle AGO = 90^{\circ}.$$\because \angle EOF = 120^{\circ},$$\therefore \angle HAG = 60^{\circ}=\angle BAC.$$\therefore \angle HAG-\angle BAH=\angle BAC-\angle BAH,$即$\angle BAG=\angle CAH.$$\because OM$平分$\angle EOF,$$AG\perp OF,$$AH\perp OE,$$\therefore AG = AH.$在$\triangle BAG$和$\triangle CAH$中,$\begin{cases}\angle AGB=\angle AHC \\ AG = AH \\ \angle BAG=\angle CAH\end{cases},$$\therefore \triangle BAG\cong \triangle CAH(ASA),$$\therefore AB = AC;$
(3)①如圖③,設(shè)點$F,$$M$分別在$BO,$$OA$的延長線上.$\because \angle AOC=\angle BOC = 60^{\circ},$$\therefore \angle FOA = 180^{\circ}-\angle AOC-\angle BOC = 60^{\circ},$$\therefore \angle FOA=\angle AOC,$即$OM$平分$\angle COF.$由
(2)知$AC = AB,$$\because \angle BAC = 60^{\circ},$$\therefore \triangle ABC$是等邊三角形;②如圖③,在$OC$上截取$ON = OB,$連接$BN.$$\because \angle COB = 60^{\circ},$$\therefore \triangle BON$是等邊三角形,$\therefore BN = OB,$$\angle OBN = 60^{\circ}.$$\because \triangle ABC$是等邊三角形,$\therefore \angle ABC = 60^{\circ}=\angle OBN,$$\therefore \angle OBN-\angle ABN=\angle ABC-\angle ABN,$即$\angle ABO=\angle CBN.$在$\triangle AOB$和$\triangle CNB$中,$\begin{cases}BA = BC \\ \angle ABO=\angle CBN \\ BO = BN\end{cases},$$\therefore \triangle AOB\cong \triangle CNB(SAS),$$\therefore OA = NC,$$\therefore OC = ON + CN = OB + OA,$即$OC = OA + OB.$