亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第42頁

第42頁

信息發(fā)布者:
證明: (1)$\because \triangle ADC\cong \triangle BOC,$$\therefore CO = CD.$$\because$將$\triangle BOC$繞點$C$按順時針方向旋轉(zhuǎn)$60^{\circ}$得$\triangle ADC,$$\therefore \angle DCO = 60^{\circ},$$\therefore \triangle COD$是等邊三角形;
(2)$AD// OC.$理由如下:由
(1)知,$\triangle DOC$是等邊三角形,$\therefore \angle CDO=\angle DOC = 60^{\circ}.$$\because \alpha = 120^{\circ},$$\triangle COB\cong \triangle CDA,$$\therefore \angle ADC=\angle COB = 120^{\circ},$$\therefore \angle ADO = 120^{\circ}-60^{\circ}=60^{\circ},$$\therefore \angle ADO=\angle DOC = 60^{\circ},$$\therefore AD// OC;$
(3)$\angle AOD = 360^{\circ}-\angle AOB-\alpha-\angle COD = 360^{\circ}-110^{\circ}-\alpha - 60^{\circ}=190^{\circ}-\alpha,$$\angle ADO=\angle ADC-\angle CDO=\alpha - 60^{\circ},$$\angle OAD = 180^{\circ}-\angle ADO-\angle AOD = 180^{\circ}-(\alpha - 60^{\circ})-(190^{\circ}-\alpha)=50^{\circ},$若$\angle ADO=\angle AOD,$即$\alpha - 60^{\circ}=190^{\circ}-\alpha,$解得$\alpha = 125^{\circ};$若$\angle ADO=\angle OAD,$即$\alpha - 60^{\circ}=50^{\circ},$解得$\alpha = 110^{\circ};$若$\angle OAD=\angle AOD,$即$50^{\circ}=190^{\circ}-\alpha,$解得$\alpha = 140^{\circ}.$綜上,當(dāng)$\alpha$為$125^{\circ}$或$110^{\circ}$或$140^{\circ}$時,$\triangle AOD$是等腰三角形.
證明: (1)如圖①,過點$A$作$AG\perp OF$于點$G,$$AH\perp OE$于點$H,$則$\angle AHO=\angle AGO = 90^{\circ}.$$\because \angle EOF = 120^{\circ},$$\therefore \angle HAG = 60^{\circ}=\angle BAC,$$\therefore \angle HAG-\angle BAH=\angle BAC-\angle BAH,$即$\angle BAG=\angle CAH.$$\because OM$平分$\angle EOF,$$AG\perp OF,$$AH\perp OE,$$\therefore AG = AH.$在$\triangle BAG$和$\triangle CAH$中,$\begin{cases}\angle AGB=\angle AHC \\ AG = AH \\ \angle BAG=\angle CAH\end{cases},$$\therefore \triangle BAG\cong \triangle CAH(ASA),$$\therefore AB = AC;$
(2)
(1)中的結(jié)論還成立.證明如下:如圖②,過點$A$作$AG\perp OF$于點$G,$$AH\perp OE$于點$H,$則$\angle AHC=\angle AGO = 90^{\circ}.$$\because \angle EOF = 120^{\circ},$$\therefore \angle HAG = 60^{\circ}=\angle BAC.$$\therefore \angle HAG-\angle BAH=\angle BAC-\angle BAH,$即$\angle BAG=\angle CAH.$$\because OM$平分$\angle EOF,$$AG\perp OF,$$AH\perp OE,$$\therefore AG = AH.$在$\triangle BAG$和$\triangle CAH$中,$\begin{cases}\angle AGB=\angle AHC \\ AG = AH \\ \angle BAG=\angle CAH\end{cases},$$\therefore \triangle BAG\cong \triangle CAH(ASA),$$\therefore AB = AC;$
(3)①如圖③,設(shè)點$F,$$M$分別在$BO,$$OA$的延長線上.$\because \angle AOC=\angle BOC = 60^{\circ},$$\therefore \angle FOA = 180^{\circ}-\angle AOC-\angle BOC = 60^{\circ},$$\therefore \angle FOA=\angle AOC,$即$OM$平分$\angle COF.$由
(2)知$AC = AB,$$\because \angle BAC = 60^{\circ},$$\therefore \triangle ABC$是等邊三角形;②如圖③,在$OC$上截取$ON = OB,$連接$BN.$$\because \angle COB = 60^{\circ},$$\therefore \triangle BON$是等邊三角形,$\therefore BN = OB,$$\angle OBN = 60^{\circ}.$$\because \triangle ABC$是等邊三角形,$\therefore \angle ABC = 60^{\circ}=\angle OBN,$$\therefore \angle OBN-\angle ABN=\angle ABC-\angle ABN,$即$\angle ABO=\angle CBN.$在$\triangle AOB$和$\triangle CNB$中,$\begin{cases}BA = BC \\ \angle ABO=\angle CBN \\ BO = BN\end{cases},$$\therefore \triangle AOB\cong \triangle CNB(SAS),$$\therefore OA = NC,$$\therefore OC = ON + CN = OB + OA,$即$OC = OA + OB.$