(1)證明:
如圖①,過點$C$作$CF\perp AN,$垂足為$F。$
因為$AC$平分$\angle MAN,$$CE\perp AB,$$CF\perp AN,$所以$CE = CF。$
因為$\angle CBE+\angle ADC = 180^{\circ},$$\angle CDF+\angle ADC = 180^{\circ},$所以$\angle CBE=\angle CDF。$
在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE=\angle CDF \\ \angle CEB=\angle CFD = 90^{\circ}\\CE = CF\end{cases},$所以$\triangle BCE\cong\triangle DCF(AAS),$所以$BC = DC。$
(2)解:$AD - AB = 2BE。$理由如下:
如圖②,過點$C$作$CF\perp AD,$垂足為$F。$
因為$AC$平分$\angle MAN,$$CE\perp AB,$$CF\perp AD,$所以$CE = CF。$
因為$\angle ABC+\angle ADC = 180^{\circ},$$\angle ABC+\angle CBE = 180^{\circ},$所以$\angle CDF=\angle CBE。$
在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE=\angle CDF \\ \angle CEB=\angle CFD = 90^{\circ}\\CE = CF\end{cases},$所以$\triangle BCE\cong\triangle DCF(AAS),$所以$DF = BE。$
因為$CF = CE,$$AC = AC,$所以$Rt\triangle ACF\cong Rt\triangle ACE(HL),$所以$AF = AE。$
所以$AD=AF + DF=AE + DF=AB + BE+DF=AB + 2BE,$所以$AD - AB = 2BE。$
(3)解:
如圖③,在$BD$上截取$BH = BG,$連接$OH。$
因為$BH = BG,$$\angle OBH=\angle OBG,$$OB = OB,$所以$\triangle OBH\cong\triangle OBG(SAS),$所以$\angle OHB=\angle OGB。$
因為$AO$是$\angle MAN$的平分線,$BO$是$\angle ABD$的平分線,所以點$O$到$AD,$$AB,$$BD$的距離相等,所以$\angle ODH=\angle ODF。$
因為$\angle OHB=\angle ODH+\angle DOH,$$\angle OGB=\angle ODF+\angle DAB,$所以$\angle DOH=\angle DAB = 60^{\circ},$所以$\angle GOH = 120^{\circ},$所以$\angle BOG=\angle BOH = 60^{\circ},$所以$\angle DOH=\angle DOF = 60^{\circ}。$
在$\triangle ODH$和$\triangle ODF$中,$\begin{cases}OD = OD \\ \angle ODH=\angle ODF\\\angle DOH=\angle DOF\end{cases},$所以$\triangle ODH\cong\triangle ODF(ASA),$所以$DH = DF。$
所以$DB=DH + BH=DF + BG=2 + 1=3。$