亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第35頁

第35頁

信息發(fā)布者:
解:(1)點$O'$在$\angle A$的平分線上。理由如下:
如圖,過點$O'$作$O'F\perp AD$于點$F,$作$O'G\perp BC$于點$G,$作$O'H\perp AE$于點$H。$
因為$O'$是$\angle ABC,$$\angle ACB$外角的平分線的交點,所以$O'F = O'G,$$O'G = O'H,$所以$O'F = O'G = O'H。$
所以點$O'$在$\angle A$的平分線上。
(2)證明:
因為$O$是$\angle ABC,$$\angle ACB$的平分線的交點,所以$\angle OBC=\frac{1}{2}\angle ABC。$
因為$O'$是$\angle ABC,$$\angle ACB$外角的平分線的交點,所以$\angle CBO'=\frac{1}{2}\angle CBD。$
因為$\angle ABC+\angle CBD = 180^{\circ},$所以$\angle OBC+\angle CBO'=\frac{1}{2}\times180^{\circ}=90^{\circ}。$
同理可得$\angle OCB+\angle BCO' = 90^{\circ}。$
在四邊形$OBO'C$中,因為$\angle OBO'+\angle BOC+\angle OCO'+\angle BO'C = 360^{\circ},$$\angle OBC+\angle BOC+\angle OCB+\angle BCO'+\angle CBO'+\angle BO'C = 360^{\circ},$所以$\angle BOC+\angle BO'C = 360^{\circ}-(\angle OBC+\angle CBO')-(\angle OCB+\angle BCO') = 180^{\circ}。$

(1)證明:
如圖①,過點$C$作$CF\perp AN,$垂足為$F。$
因為$AC$平分$\angle MAN,$$CE\perp AB,$$CF\perp AN,$所以$CE = CF。$
因為$\angle CBE+\angle ADC = 180^{\circ},$$\angle CDF+\angle ADC = 180^{\circ},$所以$\angle CBE=\angle CDF。$
在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE=\angle CDF \\ \angle CEB=\angle CFD = 90^{\circ}\\CE = CF\end{cases},$所以$\triangle BCE\cong\triangle DCF(AAS),$所以$BC = DC。$
(2)解:$AD - AB = 2BE。$理由如下:
如圖②,過點$C$作$CF\perp AD,$垂足為$F。$
因為$AC$平分$\angle MAN,$$CE\perp AB,$$CF\perp AD,$所以$CE = CF。$
因為$\angle ABC+\angle ADC = 180^{\circ},$$\angle ABC+\angle CBE = 180^{\circ},$所以$\angle CDF=\angle CBE。$
在$\triangle BCE$和$\triangle DCF$中,$\begin{cases}\angle CBE=\angle CDF \\ \angle CEB=\angle CFD = 90^{\circ}\\CE = CF\end{cases},$所以$\triangle BCE\cong\triangle DCF(AAS),$所以$DF = BE。$
因為$CF = CE,$$AC = AC,$所以$Rt\triangle ACF\cong Rt\triangle ACE(HL),$所以$AF = AE。$
所以$AD=AF + DF=AE + DF=AB + BE+DF=AB + 2BE,$所以$AD - AB = 2BE。$
(3)解:
如圖③,在$BD$上截取$BH = BG,$連接$OH。$
因為$BH = BG,$$\angle OBH=\angle OBG,$$OB = OB,$所以$\triangle OBH\cong\triangle OBG(SAS),$所以$\angle OHB=\angle OGB。$
因為$AO$是$\angle MAN$的平分線,$BO$是$\angle ABD$的平分線,所以點$O$到$AD,$$AB,$$BD$的距離相等,所以$\angle ODH=\angle ODF。$
因為$\angle OHB=\angle ODH+\angle DOH,$$\angle OGB=\angle ODF+\angle DAB,$所以$\angle DOH=\angle DAB = 60^{\circ},$所以$\angle GOH = 120^{\circ},$所以$\angle BOG=\angle BOH = 60^{\circ},$所以$\angle DOH=\angle DOF = 60^{\circ}。$
在$\triangle ODH$和$\triangle ODF$中,$\begin{cases}OD = OD \\ \angle ODH=\angle ODF\\\angle DOH=\angle DOF\end{cases},$所以$\triangle ODH\cong\triangle ODF(ASA),$所以$DH = DF。$
所以$DB=DH + BH=DF + BG=2 + 1=3。$