$ (1)證明: $
因為$AC$平分$\angle DAB,$$CF\perp AB,$$CE\perp AD,$所以$CE = CF,$$\angle EAC=\angle BAC。$
在$Rt\triangle CDE$和$Rt\triangle CBF$中,$\begin{cases}CE = CF \\ CD = CB\end{cases},$所以$Rt\triangle CDE\cong Rt\triangle CBF(HL)。$
所以$\angle B=\angle CDE。$因為$\angle CDE+\angle ADC = 180^{\circ},$所以$\angle ADC+\angle B = 180^{\circ}。$
$ (2)\frac {9}{2}$