亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第26頁(yè)

第26頁(yè)

信息發(fā)布者:
$a>\frac{5}{2}$
(1)證明:因?yàn)?AH\perp BC,$$\angle BAC = 90^{\circ},$所以$\angle AHC = 90^{\circ}=\angle BAC,$所以$\angle BAH+\angle CAH = 90^{\circ},$$\angle BAH+\angle B = 90^{\circ},$所以$\angle CAH=\angle B。$
在$\triangle ABH$和$\triangle CAH$中,
$\begin{cases}\angle B=\angle CAH\\\angle AHB=\angle AHC\\AB = CA\end{cases}$
所以$\triangle ABH\cong\triangle CAH(AAS),$所以$BH = AH,$$AH = CH,$所以$AH=\frac{1}{2}BC。$
$ (2) $解:
①如圖,過(guò)點(diǎn)$A$作$AH\perp BP$于點(diǎn)$H,$連接$AP,$在$BP$上取一點(diǎn)$D$使得$BD = PC,$則$DP = BP - BD = 6 - 1 = 5。$
設(shè)$AC$與$BP$交于點(diǎn)$E。$
因?yàn)?\angle BAC=\angle BPC = 90^{\circ}$且$\angle AEB=\angle PEC,$所以$\angle ABD=\angle ACP。$
又因?yàn)?AB = AC,$$BD = CP,$所以$\triangle ADB\cong\triangle APC(SAS),$所以$AD = AP,$$\angle BAD=\angle PAC,$所以$\angle DAP=\angle DAE+\angle PAC=\angle BAD+\angle DAE=\angle BAC = 90^{\circ}。$
因?yàn)?AH\perp DP,$所以$AH=\frac{1}{2}DP=\frac{5}{2}。$
②如圖,過(guò)點(diǎn)$A$作$AH\perp BP$于點(diǎn)$H,$連接$AP,$在$PB$的延長(zhǎng)線上取一點(diǎn)$D$使得$BD = PC,$則$DP = BP + BD = 6 + 1 = 7。$
因?yàn)?\angle BAC=\angle BPC = 90^{\circ},$所以$\angle ABP+\angle ACP = 180^{\circ},$又因?yàn)?\angle ABP+\angle ABD = 180^{\circ},$所以$\angle ABD=\angle ACP。$
又因?yàn)?AB = AC,$$BD = CP,$所以$\triangle ADB\cong\triangle APC(SAS),$所以$AD = AP,$$\angle BAD=\angle CAP,$所以$\angle DAP=\angle DAB+\angle BAP=\angle CAP+\angle BAP=\angle BAC = 90^{\circ}。$
因?yàn)?AH\perp DP,$所以$AH=\frac{1}{2}DP=\frac{7}{2}。$
證明:在$AB$上截取$AF = AD,$連接$EF。$
因?yàn)?AE$平分$\angle PAB,$所以$\angle DAE=\angle FAE。$
在$\triangle DAE$和$\triangle FAE$中,
$\begin{cases}AD = AF\\\angle DAE=\angle FAE\\AE = AE\end{cases}$
所以$\triangle DAE\cong\triangle FAE(SAS),$所以$\angle AFE=\angle ADE。$
因?yàn)?AD// BC,$所以$\angle ADE+\angle C = 180^{\circ}。$
因?yàn)?\angle AFE+\angle EFB = 180^{\circ},$所以$\angle EFB=\angle C。$
因?yàn)?BE$平分$\angle ABC,$所以$\angle EBF=\angle EBC。$
在$\triangle BEF$和$\triangle BEC$中,
$\begin{cases}\angle EFB=\angle C\\\angle EBF=\angle EBC\\BE = BE\end{cases}$
所以$\triangle BEF\cong\triangle BEC(AAS),$所以$BC = BF,$所以$AD + BC=AF + BF = AB。$
(2)解:如圖,延長(zhǎng)$AD,$$CB$交于點(diǎn)$E。$
因?yàn)?CD$為$\angle ACB$的平分線,所以$\angle ACD=\angle ECD。$
在$\triangle ACD$和$\triangle ECD$中,
$\begin{cases}\angle ACD=\angle ECD\\CD = CD\\\angle ADC=\angle EDC = 90^{\circ}\end{cases}$
所以$\triangle ACD\cong\triangle ECD(ASA),$所以$AC = EC = 2a + 2,$$AD = ED。$
因?yàn)?CB = 2a - 3,$所以$BE = 2a + 2-(2a - 3)=5。$
因?yàn)?AD = ED,$所以$S_{\triangle ABD}:S_{\triangle ABE}=1:2。$
當(dāng)$BE\perp AB$時(shí),$\triangle ABE$的面積取最大值,即$(S_{\triangle ABE})_{max}=\frac{1}{2}\times9\times5=\frac{45}{2},$所以$(S_{\triangle ABD})_{max}=\frac{45}{4},$所以$\triangle ABD$的面積的最大值為$\frac{45}{4}。$