(1)①證明:
因?yàn)?\angle BEC=\angle CFA=\angle\alpha = 90^{\circ},$$\angle ACB = 90^{\circ},$
所以$\angle BCE+\angle ACF = 90^{\circ},$$\angle CBE+\angle BCE = 90^{\circ},$
所以$\angle ACF=\angle CBE。$
在$\triangle BCE$和$\triangle CAF$中,
$\begin{cases}\angle EBC=\angle FCA\\\angle BEC=\angle CFA\\BC = CA\end{cases},$
所以$\triangle BCE\cong\triangle CAF(AAS),$
所以$BE = CF。$
②解:$EF = BE - AF。$
證明如下:
因?yàn)?\angle BEC=\angle CFA=\angle\alpha,$$\angle\alpha+\angle ACB = 180^{\circ},$
所以$\angle CBE=180^{\circ}-\angle BCE-\angle\alpha,$$\angle ACF=\angle ACB-\angle BCE = 180^{\circ}-\angle\alpha-\angle BCE,$
所以$\angle ACF=\angle CBE。$
在$\triangle BCE$和$\triangle CAF$中,
$\begin{cases}\angle EBC=\angle FCA\\\angle BEC=\angle CFA\\BC = CA\end{cases},$
所以$\triangle BCE\cong\triangle CAF(AAS),$
所以$BE = CF,$$CE = AF,$
所以$EF=CF - CE=BE - AF。$
(2)解:不成立。結(jié)論:$EF = BE + AF。$
證明如下:
因?yàn)?\angle BEC=\angle CFA=\angle\alpha,$$\angle\alpha=\angle BCA,$
又因?yàn)?\angle EBC+\angle BCE+\angle BEC = 180^{\circ},$$\angle BCE+\angle ACF+\angle ACB = 180^{\circ},$
所以$\angle EBC+\angle BCE=\angle BCE+\angle ACF,$
所以$\angle EBC=\angle ACF。$
在$\triangle BCE$和$\triangle CAF$中,
$\begin{cases}\angle EBC=\angle FCA\\\angle BEC=\angle CFA\\BC = CA\end{cases},$
所以$\triangle BCE\cong\triangle CAF(AAS),$
所以$AF = CE,$$BE = CF。$
因?yàn)?EF=CE + CF,$
所以$EF = BE + AF。$