(1)證明:
因為$\angle 1 = \angle 2,$所以$\angle 1+\angle CAD=\angle 2+\angle CAD,$即$\angle CAB = \angle EAD。$
在$\triangle ABC$和$\triangle ADE$中,
$\begin{cases}\angle C = \angle E \\AC = AE \\\angle CAB = \angle EAD\end{cases}$
所以$\triangle ABC\cong\triangle ADE(ASA)。$
(2)解:因為$AB// DE,$$\angle D = 30^{\circ},$由
(1)知$\triangle ABC\cong\triangle ADE,$所以$\angle B = \angle D = 30^{\circ}。$
在$\triangle ABF$中,$\angle AFB = 180^{\circ}-\angle 1 - \angle B,$因為$\angle 1 = \angle 2,$$\triangle ABC\cong\triangle ADE,$所以$\angle AFB = 180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}。$