解:設(shè)點$Q$的運動速度為$x\mathrm{cm/s}。$
①當(dāng)點$P$在邊$AC$上,點$Q$在邊$AB$上,$\triangle APQ\cong\triangle DEF$時,$AP = DE = 4\mathrm{cm},$$AQ = DF = 5\mathrm{cm},$所以$4\div3 = 5\div x,$解得$x=\frac{15}{4};$
②當(dāng)點$P$在邊$AC$上,點$Q$在邊$AB$上,$\triangle APQ\cong\triangle DFE$時,$AP = DF = 5\mathrm{cm},$$AQ = DE = 4\mathrm{cm},$所以$5\div3 = 4\div x,$解得$x=\frac{12}{5};$
③當(dāng)點$P$在邊$AB$上,點$Q$在邊$AC$上,$\triangle AQP\cong\triangle DEF$時,$AP = DF = 5\mathrm{cm},$$AQ = DE = 4\mathrm{cm},$點$P$運動的路程為$9 + 12+15 - 5 = 31(\mathrm{cm}),$點$Q$運動的路程為$9 + 15+12 - 4 = 32(\mathrm{cm}),$所以$31\div3 = 32\div x,$解得$x=\frac{96}{31};$
④當(dāng)點$P$在邊$AB$上,點$Q$在邊$AC$上,$\triangle APQ\cong\triangle DEF$時,$AP = DE = 4\mathrm{cm},$$AQ = DF = 5\mathrm{cm},$點$P$運動的路程為$9 + 12+15 - 4 = 32(\mathrm{cm}),$點$Q$運動的路程為$9 + 15+12 - 5 = 31(\mathrm{cm}),$所以$32\div3 = 31\div x,$解得$x=\frac{93}{32}。$
綜上,點$Q$的運動速度為$\frac{15}{4}\mathrm{cm/s}$或$\frac{12}{5}\mathrm{cm/s}$或$\frac{96}{31}\mathrm{cm/s}$或$\frac{93}{32}\mathrm{cm/s}。$