解:?$(2)$?設(shè)?$EF = x,$?
則?$CE = x,$??$DE = 4 - x,$??$AE = 4 + x。$?
在?$Rt\triangle ADE$?中,
∵?$DE^2+AD^2=AE^2,$?
∴?$(4 - x)^2+4^2=(4 + x)^2,$?
展開式子得:?$16 - 8x + x^2+16 = 16 + 8x + x^2,$?
移項可得:?$16 - 8x + x^2+16 - 16 - 8x - x^2=0,$?
合并同類項得:?$-16x + 16 = 0,$?
移項得:?$16x = 16,$?
?$ $?解得?$x = 1,$?
∴?$DE = 4 - 1 = 3,$?
∴?$S_{\triangle ADE}=\frac {1}{2}AD·DE=\frac {1}{2}×4×3 = 6 。$?