解:?$(1)$?過點(diǎn)?$P_{作}PD\perp AC$?于點(diǎn)?$D.$?
?$ $?在?$Rt\triangle ABC$?中,?$∠A = 30°,$??$BC = 2,$?
因?yàn)樵谥苯侨切沃校?$30°$?所對的直角邊等于斜邊的一半,
所以?$AB = 2BC = 4.$?
?$ $?因?yàn)?$P $?是?$AB$?的中點(diǎn),所以?$AP=\frac {1}{2}AB = 2.$?
?$ $?在?$Rt\triangle APD$?中,?$∠A = 30°,$??$AP = 2,$?
因?yàn)樵谥苯侨切沃校?$30°$?所對的直角邊等于斜邊的一半,
所以?$PD=\frac {1}{2}AP = 1.$?
?$ $?因?yàn)?$\odot P $?與?$AC$?相切,
所以?$\odot P $?的半徑?$r = 1.$?
?$(2)$?由?$(1),$?得?$AD=\sqrt {AP^2-PD^2}=\sqrt {2^2-1^2}=\sqrt {3},$?
?$ AC=\sqrt {AB^2-BC^2}=\sqrt {4^2-2^2}=2\sqrt {3},$?
?$ $?所以?$CD = AC - AD=2\sqrt {3}-\sqrt {3}=\sqrt {3}.$?
?$ $?因?yàn)?$\odot P $?的半徑為?$\sqrt {3},$??$PD = 1<\sqrt {3},$?
所以?$\odot P $?與直線?$AC$?相交;
?$ $?過點(diǎn)?$P_{作}PE\perp BC$?于點(diǎn)?$E,$?
因?yàn)?$P $?是?$AB$?中點(diǎn),?$∠C = 90°,$?
所以?$PE$?是?$\triangle ABC$?的中位線,?$PE=\frac {1}{2}AC=\sqrt {3},$?
所以?$\odot P $?與直線?$BC$?相切?$.$?