解:?$(1) $?由題意知,
? $[(x + 6)^2-x(x + 12)]\div x$?
?$=(x^2+12x + 36-x^2-15x - 36)\div x$?
?$=-3$?
∴和諧值為?$-3。$?
?$(2) $?∵多項式?$x - 2,$??$x + 3,$??$x + p(p $?為非零常數(shù)?$)$?
是一組和諧多項式,
∴當(dāng)?$(x - 2)^2-(x + 3)+(x + p)$?
?$=x^2-4x + 4-(x^2+px + 3x + 3p)$?
?$=(-4 - p - 3)·x + 4 - 3p,$?
?$4 - 3p = 0$?時,即?$p=\frac {4}{3},$?此時多項式?$x - 2,$?
?$x + 3,$??$x + p(p $?為非零常數(shù)?$)$?是一組和諧多項式;
當(dāng)?$(x + 3)^2-(x - 2)(x + p)$?
?$=x^2+6x + 9-(x^2-px-2x-2p)$?
?$=(6 - p + 2)x+9 + 2p$?
?$9 + 2p = 0$?時,即?$p=-\frac {9}{2},$?此時多項式?$x - 2,$?
?$x + 3,$??$x + p(p $?為非零常數(shù)?$)$?是一組和諧多項式;
當(dāng)?$(x + p)^2-(x - 2)(x + 3)$?
?$=x^2+2px+p^2-(x^2+3x-2x-6)$?
?$=(2p - 1)x+p^2+6$?
?$p^2+6 = 0$?時,此時不成立。
綜上所述,?$p $?的值為?$\frac {4}{3}$?或?$-\frac {9}{2}。$?