解:?$(3)$?如圖,延長(zhǎng)?$BA,$??$CD$?交于點(diǎn)?$Q,$?延長(zhǎng)?$ED,$?
?$FA'$?交于點(diǎn)?$Q,$?則對(duì)折后?$\triangle EFQ $?與?$\triangle EFQ'$?重合。
?$ $?由?$(2)$?的結(jié)論可得?$2∠Q = ∠D'EC-∠A'FB,$?
而?$∠D'EC = 115°,$??$∠A'FB = 45°,$?
∴?$2∠Q=115°-45°=70°,$?則?$∠Q = 35°。$?
∵?$∠C = 90°,$?
∴?$∠ABC=90°-35°=55°。$?
?$ (4)EG// FH,$?不會(huì)改變。
理由如下:
如圖,?$EG $?平分?$∠D'EC,$??$FH$?平分?$∠A'FB,$?

∴?$∠D'EG=∠CEG=\frac {1}{2}∠D'EC,$?
?$∠A'FH=∠BFH=\frac {1}{2}∠A'FB。$?
?$ $?由對(duì)折可得?$∠Q'EF=∠QEF,$??$∠Q'FE=∠QFE,$?
由?$(2)$?的結(jié)論可得?$∠D'EC-∠A'FB = 2∠Q,$?
即?$∠D'EC=∠A'FB + 2∠Q。$?
∴?$∠D'EG=∠A'FH+∠Q,$?
則?$∠D'EG+∠D'EF+∠BFE+∠BFH=∠A'FH$?
?$+∠Q+∠QEF+∠BFH+∠BFE。$?
∴?$∠FEG+∠HFE=∠Q+∠QEF+∠Q'FE,$?
又∵?$∠Q+∠QEF+∠QFE = 180°,$?
∴?$∠FEG+∠HFE = 180°,$?
∴?$EG// FH。$?