亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第165頁(yè)

第165頁(yè)

信息發(fā)布者:
解:?$ (1)$?不等式?$A$?:?$x + 2>1,$?解得?$x>-1,$?
不等式?$B$?:?$x>3,$?
因?yàn)?$x>3$?的解都是?$x>-1$?的解,
所以?$A$?與?$B$?存在?$“$?雅含?$”$?關(guān)系,?$B$?是?$A$?的?$“$?子式?$”。$?
?$ (2)$?不等式?$C$?:?$\frac {x - 1}{2}<\frac {a + 1}{3},$?解得?$x<\frac {2a + 5}{3};$?
?$ $?不等式?$D$?:?$2x-(3 - x)<3,$?解得?$x<2。$?
?$ $?因?yàn)?$C$?是?$D$?的?$“$?子式?$”,$?
所以?$\frac {2a + 5}{3}\leq 2,$?解得?$a\leq \frac {1}{2}。$?
?$ (3)$?由?$\begin {cases}2m + n=k\\m - n=3\end {cases},$?解得:?$\begin {cases}{m=\dfrac {k + 3}{3}}\\{n=\dfrac {k - 6}{3}}\end {cases}$?
因?yàn)?$m\geq \frac {1}{2},$??$n<-1,$?
所以?$\begin {cases}\dfrac {k + 3}{3}\geq \dfrac{1}{2}\\\dfrac {k - 6}{3}<-1\end {cases},$?
解得?$-1.5\leq k<3,$?
因?yàn)?$k$?為整數(shù),
所以?$k$?的值為?$-1,0,1,2。$?
?$ $?不等式?$P$?:?$kx + 6>x + 4,$?整理得?$(k - 1)x>-2;$?
不等式?$Q$?:?$6(2x - 1)\leq 4x + 2,$?解得?$x\leq 1。$?
?$ ①$?當(dāng)?$k = 1$?時(shí),不等式?$P $?的解集是全體數(shù),?$P $?與?$Q $?存
在“雅含”關(guān)系,且?$Q $?是?$P $?的?$“$?子式?$”;$?
?$ ②$?當(dāng)?$k>1$?時(shí),不等式?$P $?的解集為?$x>\frac {-2}{k - 1},$?不能滿(mǎn)
足?$P $?與?$Q $?存在?$“$?雅含?$”$?關(guān)系;
?$ ③$?當(dāng)?$k<1$?時(shí),不等式?$P $?的解集為?$x<\frac {-2}{k - 1},$?
因?yàn)?$P $?與?$Q $?存在?$“$?雅含?$”$?關(guān)系,且?$Q $?是?$P $?的?$“$?子式?$”,$?
所以?$k - 1<0,$?且?$\frac {-2}{k - 1}>1,$?
解得:?$-1<k<1,$?
所以?$k = 0。$?
綜上,?$k$?的值為?$0$?或?$1。$?
$\begin{cases}x=-1\\y=\frac{7}{2}\end{cases}$或$\begin{cases}x = 2\\y=-1\end{cases}$
解 :?$(2)$?方程?$ax + by = c $?與它的?$“$?交換系數(shù)方程?$”$?
組成的方程組為?$\begin {cases}ax + by = c\\cx + by = a\end {cases}$?或?$\begin {cases}ax + by = c\\ax + cy = b\end {cases}。$?
?$ $?當(dāng)?$a + b + c = 0$?時(shí),
對(duì)于?$\begin {cases}ax + by = c\\cx + by = a\end {cases},$?解得:?$\begin {cases}{x=-1}\\{y=-1}\end {cases}$?
?$ $?對(duì)于?$\begin {cases}ax + by = c\\ax + cy = b\end {cases},$?解得:?$\begin {cases}{x=-1}\\{y=-1}\end {cases}$?
?$ $?把?$\begin {cases}x=-1\\y =-1\end {cases}$?代入?$mx+ny = p,$?得?$-(m + n)=p。$?
?$ $?所以?$(m + n)m-p(n + p)+2025$?
?$=-pm-pn-p^2+2025$?
?$=-p(m + n)-p^2+2025$?
?$=(-p)^2-p^2+2025 $?
?$= 2025$?
?$ (3)(1 + n)x+2025y = 2m + 2$?的?$“$?交換系數(shù)方
程?$”$?為?$(2m + 2)x+2025y = 1 + n$?或
?$(1 + n)x+(2m + 2)y = 2025。$?
?$ $?因?yàn)?$(10m - t)x+2025y = m + t $?是關(guān)于?$x,y$?的二
元一次方程?$(1 + n)x+2025y = 2m + 2$?的?$“$?交換
系數(shù)方程”,
所以當(dāng)?$(10m - t)x+2025y = m + t $?各系數(shù)與
?$(2m + 2)x+2025y = 1 + n$?各系數(shù)對(duì)應(yīng)相等時(shí),
得?$\begin {cases}10m - t=2m + 2\\m + t=1 + n\end {cases},$?解得:?$\begin {cases}{m=\dfrac {t+2}8}\\{n=\dfrac {9t-6}8}\end {cases}$?
∵?$t<n<8m,$?
∴?$t<\frac {9t?6}{8}<1+2,$?解得?$6<1<22(t $?為整數(shù)?$).$?
∴?$8<1+2<24,$?
∴若?$m=\frac {t+2}{8}$?為整數(shù)?$,$?必須有?$t+2=16,$?此時(shí)
?$m=2.$?
∴?$t=14.$?
當(dāng)?$t=14$?時(shí)?$,n=\frac {9t?6}{8}=\frac {9×14?6}{8}=\frac {126?6}{8}$?
?$=\frac {120}{8}=15,$?符合題意
∴?$m=2$?
?$ $?當(dāng)?$(10m - t)x+2025y = m + t $?各系數(shù)與
?$(1 + n)x+(2m + 2)y = 2025$?各系數(shù)對(duì)應(yīng)相等時(shí),
得?$\begin {cases}10m - t=1 + n\\2025=2m + 2\\m + t=2025\end {cases},$?
解得?$m=\frac {2023}{2}($?不是整數(shù),舍去)。
綜上,?$m = 2。$?
$-2.5,2$