證明:如果?$a,$??$b$?不都能被?$3$?整除,那么
有如下兩種情況:
?$ ①a,$??$b$?兩數(shù)中恰有一個能被?$3$?整除,
不妨設(shè)?$a$?能被?$3$?整除,?$b$?不能被?$3$?整除,
令?$a = 3m,$??$b = 3n\pm k_{1}(m,$??$n$?都是整數(shù),?$k_{1}$?取
?$1$?或?$2),$?于是?$a^2+b^2=9\ \mathrm {m^2}+9n^2\pm 6k_{1}n + k_{1}^2$?
?$=3(3\ \mathrm {m^2}+3n^2\pm 2k_{1}n)+k_{1}^2。$?
∵?$k_{1}$?取?$1$?或?$2,$?
∴不能被?$3$?整除,與已知矛盾。
?$ ②a,$??$b$?兩數(shù)都不能被?$3$?整除,
令?$a = 3m\pm k_{2},$??$b = 3n\pm k_{3}(m,$??$n$?都是整數(shù),
?$k_{2},$??$k_{3}$?取?$1$?或?$2),$?則
?$a^2+b^2=(3m\pm k_{2})^2+(3n\pm k_{3})^2$?
?$=9\ \mathrm {m^2}\pm 6k_{2}m + k_{2}^2+9n^2\pm 6k_{3}n + k_{3}^2$?
?$=3(3\ \mathrm {m^2}\pm 2k_{2}m + 3n^2\pm 2k_{3}n)+k_{2}^2+k_{3}^2。$?
∵?$k_{2},$??$k_{3}$?取?$1$?或?$2,$?
∴?$k_{2}^2+k_{3}^2$?的值為?$2$?或?$5$?或?$8,$?
∴不能被?$3$?整除,與已知矛盾。
綜上可知,?$a,$??$b$?都能被?$3$?整除。