亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第130頁

第130頁

信息發(fā)布者:
解:由?$x + 5<2x + a,$?解得?$x>5 - a,$?
因為不等式只有?$3$?個負整數(shù)解,
所以它們一定是?$-1,$??$-2,$??$-3。$?
則?$-4\leq 5 - a<-3,$?
解得?$8<a\leq 9。$?
解:解不等式?$\frac {3}{2}(2x - 4)-m\leq 2,$?
?$ $?去括號得?$3x - 6 - m\leq 2,$
?移項得?$3x\leq m + 8,$?
解得?$x\leq \frac {m + 8}{3}。$?
?$ $?因為不等式的正整數(shù)解是?$1,$??$2,$??$3,$?
所以?$3\leq \frac {m + 8}{3}<4,$?
??解得?$1\leq m<4。$?
解:由?$4x + 2>3(x + a),$?解得?$x>3a - 2;$?
由?$2x>3(x - 2)+5,$?解得?$x<1。$?
由關(guān)于?$x$?的不等式組?$\begin {cases}4x + 2>3(x + a)\\2x>3(x - 2)+5\end {cases}$?僅有三個
整數(shù)解,則這三個整數(shù)解為?$-2,$??$-1,$??$0,$?
得?$-3\leq 3a - 2<-2,$?解得?$-\frac {1}{3}\leq a<0。$?
解:?$ \begin {cases}2y + 5\leq 3(y + t) ①\\\dfrac {y - t}{2}<\dfrac {y}{3}-\dfrac {7}{6} ②\end {cases}$?
?$ $?由?$①$?得?$y\geq 5 - 3t;$?
?$ $?由?$②$?得?$y<3t - 7。$?
?$ $?則不等式組的解集是?$5 - 3t\leq y<3t - 7。$?
?$ $?因為不等式組的整數(shù)解是?$-3,$??$-2,$??$-1,$??$0,$??$1,$?
所以?$-4<5 - 3t\leq - 3,$??$1<3t - 7\leq 2。$?
所以?$\frac {8}{3}<t\leq 3。$?
?$ $?又因為?$5 - 3t<3t - 7,$?
所以?$t>2。$?
綜上,?$\frac {8}{3}<t<3。$?
故參數(shù)?$t $?的取值范圍是?$\frac {8}{3}<1<3.$?
解:?$ \begin {cases}\dfrac {2x + 1}{2}+3>-1 ①\\x <m ②\end {cases}$?
?$ $?由?$①$?得?$x>-\frac {9}{2},$?
由?$②$?得?$x<m,$?
故原不等式組的解集為?$-\frac {9}{2}<x<m。$?
?$ $?又因為不等式組的所有整數(shù)解的和是?$-9,$?
?$ $?當?$m<0$?時,整數(shù)解一定是?$-4,$??$-3,$??$-2,$?
由此可以得到?$-2<m\leq - 1;$?
?$ $?當?$m>0$?時,整數(shù)解一定是?$-4,$??$-3,$??$-2,$??$-1,$?
?$0,$??$1,$?則?$1<m\leq 2。$?
?$ $?故?$m $?的取值范圍是?$-2<m\leq - 1$?或?$1<m\leq 2。$?
解:?$ (1)$?解不等式組?$\begin {cases}1 - 2x<5\\\dfrac {3x - 1}{2}\leq 4\end {cases},$?
解?$1 - 2x<5$?得?$x>-2;$?
解?$\frac {3x - 1}{2}\leq 4$?得?$x\leq 3。$?
所以不等式組的解集為?$-2<x\leq 3。$?
解不等式?$x + 1>m,$?得?$x>m - 1,$?
解不等式?$x - 1\leq n,$?得?$x\leq n + 1。$?
由題意得?$m - 1 = - 2,$??$n + 1 = 3,$?
解得?$m = - 1,$??$n = 2,$?
所以?$m + n = - 1 + 2 = 1。$?
?$(2)①$?當?$m = - 1$?時,關(guān)于?$x$?的不等式組
?$\begin {cases}x + 1>m\\x - 1\leq n\end {cases}$?的解集為?$-2<x\leq n + 1。$?
因為不等式組恰好有?$4$?個整數(shù)解,
所以?$4$?個整數(shù)解是?$-1,$??$0,$??$1,$??$2,$?
所以?$2\leq n + 1<3,$?即?$1\leq n<2。$?
?$②$?當?$n = 2m $?時,關(guān)于?$x$?的不等式組?$\begin {cases}x + 1>m\\x - 1\leq n\end {cases}$?的
解集為?$m - 1<x\leq 2m + 1,$?
?$2m + 1-(m - 1)=m + 2。$?
因為不等式組恰好有?$4$?個數(shù)解,
所以?$3<m + 2<5,$?解得?$1<m<3,$?
所以?$0<m - 1<2,$??$3<2m + 1<7。$?
當?$0<m - 1<1,$?即?$1<m<2$?時,

必須滿足?$4\leq 2m + 1<5,$?所以?$\frac {3}{2}\leq m<2。$?
當?$1\leq m - 1<2,$?即?$2\leq m<3$?時,

必須滿足?$5\leq 2m + 1<6,$?所以?$2\leq m<\frac {5}{2}。$?
綜上,?$\frac {3}{2}\leq m<\frac {5}{2}。$?