解:?$ (1)$?解不等式組?$\begin {cases}1 - 2x<5\\\dfrac {3x - 1}{2}\leq 4\end {cases},$?
解?$1 - 2x<5$?得?$x>-2;$?
解?$\frac {3x - 1}{2}\leq 4$?得?$x\leq 3。$?
所以不等式組的解集為?$-2<x\leq 3。$?
解不等式?$x + 1>m,$?得?$x>m - 1,$?
解不等式?$x - 1\leq n,$?得?$x\leq n + 1。$?
由題意得?$m - 1 = - 2,$??$n + 1 = 3,$?
解得?$m = - 1,$??$n = 2,$?
所以?$m + n = - 1 + 2 = 1。$?
?$(2)①$?當?$m = - 1$?時,關(guān)于?$x$?的不等式組
?$\begin {cases}x + 1>m\\x - 1\leq n\end {cases}$?的解集為?$-2<x\leq n + 1。$?
因為不等式組恰好有?$4$?個整數(shù)解,
所以?$4$?個整數(shù)解是?$-1,$??$0,$??$1,$??$2,$?
所以?$2\leq n + 1<3,$?即?$1\leq n<2。$?
?$②$?當?$n = 2m $?時,關(guān)于?$x$?的不等式組?$\begin {cases}x + 1>m\\x - 1\leq n\end {cases}$?的
解集為?$m - 1<x\leq 2m + 1,$?
?$2m + 1-(m - 1)=m + 2。$?
因為不等式組恰好有?$4$?個數(shù)解,
所以?$3<m + 2<5,$?解得?$1<m<3,$?
所以?$0<m - 1<2,$??$3<2m + 1<7。$?
當?$0<m - 1<1,$?即?$1<m<2$?時,
必須滿足?$4\leq 2m + 1<5,$?所以?$\frac {3}{2}\leq m<2。$?
當?$1\leq m - 1<2,$?即?$2\leq m<3$?時,
必須滿足?$5\leq 2m + 1<6,$?所以?$2\leq m<\frac {5}{2}。$?
綜上,?$\frac {3}{2}\leq m<\frac {5}{2}。$?