解:連接?$OA.$?
∵?$CD = 10,$?
∴?$OA=OC = OD = 5$?
.∵?$OM:OC = 3:5,$?
∴?$OM = 3,$?
∴在?$Rt\triangle AMO$?中,?$AM=\sqrt {OA^2-OM^2}=\sqrt {5^2-3^2} = 4.$?
如圖①,當點?$M$?在半徑?$OD$?上時,?$CM=OC + OM = 5 + 3 = 8.$?
∴在?$Rt\triangle AMC$?中,?$AC=\sqrt {AM^2+CM^2}=\sqrt {4^2+8^2} = 4\sqrt {5}.$?
如圖②,當點?$M$?在半徑?$OC$?上時,?$CM=OC - OM = 5 - 3 = 2.$?
∴在?$Rt\triangle AMC$?中,?$AC=\sqrt {AM^2+CM^2}=\sqrt {4^2+2^2} = 2\sqrt {5}.$?
綜上所述,弦?$AC$?的長為?$4\sqrt {5}$?或?$2\sqrt {5}$?