解:?$(1)$?設?$∠BAC=α。$?
根據(jù)題意,得?$\overset {\frown }{EF}$?的長就是圓錐底面圓的周長,
?$ $?所以?$\frac {α}{180°}×\pi ×AD = ED×\pi 。$?
?$ $?又因為?$AD = 2ED,$?
?$ $?所以?$\frac {α}{180°}×\pi ×2ED = ED×\pi ,$?
?$ $?兩邊同時除以?$ED\pi$?得:?$\frac {α}{90°} = 1,$?
解得?$α= 90°,$?即?$∠BAC = 90°。$?
?$(2)$?因為圓錐底面圓的直徑?$ED$?為?$5\ \mathrm {cm},$?
所以?$AD = 2ED = 10\ \mathrm {cm}。$?
?$ $?因為?$∠BAC = 90°,$??$AB = AC,$?
所以?$\triangle ABC$?是等腰直角三角形。
?$ $?因為?$AD\perp BC,$?
所以?$BC = 2AD = 20\ \mathrm {cm}。$?
?$ S_{涂色}=S_{\triangle ABC}-S_{扇形AEF}=\frac {1}{2}BC·AD-\frac {90\pi ×AD^2}{360}=\frac {1}{2}×20×10-\frac {90\pi ×10^2}{360}=(100 - 25\pi )\mathrm {cm}^2。$?