亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第43頁

第43頁

信息發(fā)布者:
25
△ABD、△ACD、△BCD
$2\sqrt{5}$
可以
解:∵?$AB = AC,$?
∴?$△ABC$?是等腰三角形。
又∵?$AD$?平分?$∠BAC,$?
∴?$AD$?是?$BC$?的垂直平分線。
∵?$EF $?垂直平分?$AC,$?
∴點(diǎn)?$O$?是?$△ABC$?的外心,
∴?$OA$?是?$△ABC$?的外接圓的半徑。
?$ $?在?$Rt△AOF_{中},$??$AF = \frac {1}{2}AC = \frac {1}{2}AB = 2,$??$OF = 1,$?
∴?$OA = \sqrt {AF^2+OF^2} = \sqrt {2^2+1^2} = \sqrt {5},$?
∴?$△ABC$?的外接圓的面積為?$(\sqrt {5})^2×\pi = 5π。$?

解:如圖,過點(diǎn)?$A$?作?$AD⊥BC,$?垂足為?$D。$?
∵?$AB = AC = 5,$??$AD⊥BC,$??$BC = 6,$?
∴易得點(diǎn)?$O$?在直線?$AD$?上,?$BD = \frac {1}{2}BC = 3,$?
∴在?$Rt△ABD$?中,?$AD = \sqrt {AB^2-BD^2} = 4。$?
?$ $?當(dāng)點(diǎn)?$O?$?在?$AD$?的反向延長線上時(shí),連接?$O?B。$?
∵?$O?D = AD + AO? = 4 + 3 = 7,$?
∴在?$Rt△O?BD$?中,?$O?B = \sqrt {O_{1}D^2+BD^2} = \sqrt {7^2+3^2} = \sqrt {58}。$?
?$ $?當(dāng)點(diǎn)?$O?$?在線段?$AD$?上時(shí),連接?$O?B。$?
∵?$O?D = AD - AO? = 4 - 3 = 1,$?
∴在?$Rt△O?BD$?中,?$O?B = \sqrt {O_{2}D^2+BD^2} = \sqrt {1^2+3^2} = \sqrt {10}。$?
綜上所述,?$⊙O$?的半徑為?$\sqrt {58}$?或?$\sqrt {10}。$?