解:如圖,過點(diǎn)?$A$?作?$AD⊥BC,$?垂足為?$D。$?
∵?$AB = AC = 5,$??$AD⊥BC,$??$BC = 6,$?
∴易得點(diǎn)?$O$?在直線?$AD$?上,?$BD = \frac {1}{2}BC = 3,$?
∴在?$Rt△ABD$?中,?$AD = \sqrt {AB^2-BD^2} = 4。$?
?$ $?當(dāng)點(diǎn)?$O?$?在?$AD$?的反向延長線上時(shí),連接?$O?B。$?
∵?$O?D = AD + AO? = 4 + 3 = 7,$?
∴在?$Rt△O?BD$?中,?$O?B = \sqrt {O_{1}D^2+BD^2} = \sqrt {7^2+3^2} = \sqrt {58}。$?
?$ $?當(dāng)點(diǎn)?$O?$?在線段?$AD$?上時(shí),連接?$O?B。$?
∵?$O?D = AD - AO? = 4 - 3 = 1,$?
∴在?$Rt△O?BD$?中,?$O?B = \sqrt {O_{2}D^2+BD^2} = \sqrt {1^2+3^2} = \sqrt {10}。$?
綜上所述,?$⊙O$?的半徑為?$\sqrt {58}$?或?$\sqrt {10}。$?