亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第44頁

第44頁

信息發(fā)布者:
B
A
$90^{\circ}$
$34^{\circ}$
證明:?$(1)$?因為?$AE = CE,$?根據(jù)等邊對等角,
所以?$∠A=∠C。$?
?$ $?因為?$\overset {\frown }{AD}=\overset {\frown }{AD},$?根據(jù)同弧所對的圓周角相等,
所以?$∠C = ∠EBD。$?
?$ $?所以?$∠A=∠EBD,$?根據(jù)同位角相等,兩直線平行,
所以?$AC// BD。$?
?$(2)$?連接?$OD、$??$OB。$?
?$ $?因為?$\overset {\frown }{BC}=\overset {\frown }{BC},$?根據(jù)同弧所對的圓周角相等,
所以?$∠EDB=∠A。$?
?$ $?由?$(1)$?知,?$∠EBD=∠C,$??$∠A = ∠C,$?
所以?$∠EDB=∠EBD,$?根據(jù)等角對等邊,
所以?$EB = ED。$?
?$ $?又因為?$OE = OE,$??$OB = OD,$?
所以在?$\triangle BOE$?和?$\triangle DOE$?中,
?$ \begin {cases}EB = ED\\OE = OE\\OB = OD\end {cases}$?
?$ $?根據(jù)?$SSS($?邊邊邊?$)$?判定定理,可得?$\triangle BOE\cong \triangle DOE,$?
所以?$∠BEF=∠DEF。$?
B