解:如圖?$.$?設(shè)?$BE = t.$?
∵?$EF = 10,$?
∴?$OE = OG = OH = 5.$?
∵?$∠GOH = 90°,$?
∴?$∠AOG+∠BOH = 90°.$?
∵在矩形?$ABCD$?中,?$∠DAB=∠ABC = 90°,$?
∴?$∠AGO+∠AOG = 90°,$?
∴?$∠AGO=∠BOH.$?
在?$\triangle GAO$?和?$\triangle OBH$?中,
?$\begin {cases}∠GAO=∠OBH = 90°,\\∠AGO=∠BOH,\\OG = HO,\end {cases} $?
∴?$\triangle GAO\cong \triangle OBH,$?
∴?$GA = OB = BE - OE=t - 5.$?
∵?$AB = 7,$?
∴?$AE = BE - AB=t - 7,$?
∴?$AO = OE - AE = 5-(t - 7)=12 - t.$?
在?$\text{Rt}\triangle GAO$?中,由勾股定理,得?$AG^2+AO^2=OG^2,$?
∴?$(t - 5)^2+(12 - t)^2=5^2,$?
即?$t^2-17t + 72 = 0,$?
解得?$t_{1}=8,$??$t_{2}=9,$?
∴?$BE$?的長(zhǎng)為?$8$?或?$9$?