解:?$(1)$?對于方程?$x^2-(m + 2)x + m - 1 = 0,$?其中?$a = 1,$??$b = -(m + 2),$??$c = m - 1。$?
?$ ?=b^2-4ac=[-(m + 2)]^2-4×1×(m - 1)=\mathrm {m^2}+4m + 4 - 4m + 4=\mathrm {m^2}+8。$?
?$ $?因為?$\mathrm {m^2}\geqslant 0,$?
所以?$\mathrm {m^2}+8>0,$?即?$?>0,$?
?$ $?所以無論?$m{取何值},$?方程都有兩個不相等的實數(shù)根。
?$(2)$?因為方程?$x^2-(m + 2)x + m - 1 = 0$?的兩個實數(shù)根為?$x_{1}、$??$x_{2},$?
?$ $?由韋達定理得?$x_{1}+x_{2}=m + 2,$??$x_{1}x_{2}=m - 1。$?
?$ $?因為?$x_{1}^2+x_{2}^2-x_{1}x_{2}=9,$?
根據(jù)完全平方公式?$x_{1}^2+x_{2}^2=(x_{1}+x_{2})^2-2x_{1}x_{2},$?
?$ $?所以?$(x_{1}+x_{2})^2-3x_{1}x_{2}=9,$?
?$ $?將?$x_{1}+x_{2}=m + 2,$??$x_{1}x_{2}=m - 1$?代入得?$(m + 2)^2-3(m - 1)=9,$?
?$ $?展開得?$\mathrm {m^2}+4m + 4 - 3m + 3 = 9,$?
?$ $?整理得?$\mathrm {m^2}+m - 2 = 0,$?
?$ $?因式分解得?$(m + 2)(m - 1)=0,$?
?$ $?則?$m + 2 = 0$?或?$m - 1 = 0,$?
?$ $?解得?$m_{1}=-2,$??$m_{2}=1。$?
?$ $?所以?$m $?的值為?$-2$?或?$1。$?