解:設(shè)矩形兩鄰邊的長分別為?$x_{1}、$??$x_{2}. $?
由根與系數(shù)的關(guān)系,可知?$x_{1} + x_{2} = k + 1,$??$x_{1}x_{2}=\frac {1}{4}k^2 + 1. $?
由方程有兩個(gè)根,可知?$b^2 - 4ac=[-(k + 1)]^2 - 4(\frac {1}{4}k^2 + 1)=2k - 3\geq 0,$?
解得?$k\geq \frac {3}{2}. $?
又∵矩形的對角線的長為?$\sqrt {5},$?
∴由勾股定理,得?$x_{1}^2 + x_{2}^2 = (\sqrt {5})^2,$?
即?$(x_{1} + x_{2})^2 - 2x_{1}x_{2} = 5,$?
∴?$(k + 1)^2 - 2(\frac {1}{4}k^2 + 1)=5. $?
整理,得?$k^2 + 4k - 12 = 0,$?
因式分解得?$(k - 2)(k + 6)=0,$?
解得?$k_{1} = 2,$??$k_{2} = -6($?不合題意,舍去).
∴?$k$?的值為?$2.$?