解:一元二次方程?$x^2-11x + 30 = 0,$?
其中?$a = 1,$??$b = -11,$??$c = 30,$??$b^2-4ac=(-11)^2-4×1×30 = 121 - 120 = 1。$?
則?$x=\frac {-(-11)\pm \sqrt {1}}{2×1}=\frac {11\pm 1}{2},$?所以?$x_{1}=6,$??$x_{2}=5。$?
?$ $?當(dāng)?shù)妊切?$ABC$?的底邊長(zhǎng)為?$5、$?腰長(zhǎng)為?$6$?時(shí),底邊上的高
?$h=\sqrt {6^2-(\frac {5}{2})^2}=\sqrt {36-\frac {25}{4}}=\sqrt {\frac {144 - 25}{4}}=\sqrt {\frac {119}{4}}=\frac {\sqrt {119}}{2},$?
面積?$S=\frac {1}{2}×5×\frac {\sqrt {119}}{2}=\frac {5\sqrt {119}}{4};$?
?$ $?當(dāng)?shù)妊切?$ABC$?的底邊長(zhǎng)為?$6、$?腰長(zhǎng)為?$5$?時(shí),底邊上的高
?$h=\sqrt {5^2-(\frac {6}{2})^2}=\sqrt {25 - 9}=\sqrt {16}=4,$?
面積?$S=\frac {1}{2}×6×4 = 12。$?
綜上所述,?$\triangle ABC$?的面積為?$\frac {5\sqrt {119}}{4}$?或?$12。$?