亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第13頁(yè)

第13頁(yè)

信息發(fā)布者:
0.618
6或-4
$\frac{1 - \sqrt{13}}{2}$
解:對(duì)于方程?$y^2+2\sqrt {2}y = 6,$?化為一般式為
?$y^2+2\sqrt {2}y - 6 = 0,$?
其中?$a = 1,$??$b = 2\sqrt {2},$??$c = -6,$?
?$b^2-4ac=(2\sqrt {2})^2-4×1×(-6)=8 + 24 = 32。$?
則?$y=\frac {-2\sqrt {2}\pm \sqrt {32}}{2×1}=\frac {-2\sqrt {2}\pm 4\sqrt {2}}{2},$?
所以?$y_{1}=\frac {-2\sqrt {2}+4\sqrt {2}}{2}=\sqrt {2},$??$y_{2}=\frac {-2\sqrt {2}-4\sqrt {2}}{2}=-3\sqrt {2}。$?
解:將方程?$(2x + 1)(x - 1)=8(9 - x)-1$?展開
并化為一般式:?$2x^2-2x+x - 1 = 72 - 8x - 1,$?
即?$2x^2+7x - 72 = 0,$?
其中?$a = 2,$??$b = 7,$??$c = -72,$?
?$b^2-4ac=7^2-4×2×(-72)=49 + 576 = 625。$?
則?$x=\frac {-7\pm \sqrt {625}}{2×2}=\frac {-7\pm 25}{4},$?
所以?$x_{1}=\frac {-7 + 25}{4}=\frac {9}{2},$??$x_{2}=\frac {-7 - 25}{4}=-8。$?
解:將方程?$(x + 1)^2-2(x - 1)^2=7$?展開并化為
一般式:?$x^2+2x + 1-2(x^2-2x + 1)=7,$?
?$x^2+2x + 1-2x^2+4x - 2 = 7,$?
即?$-x^2+6x - 8 = 0,$?
兩邊同時(shí)乘以?$-1$?得?$x^2-6x + 8 = 0,$?
其中?$a = 1,$??$b = -6,$??$c = 8,$?
?$b^2-4ac=(-6)^2-4×1×8 = 36 - 32 = 4。$?
則?$x=\frac {-(-6)\pm \sqrt {4}}{2×1}=\frac {6\pm 2}{2},$?
所以?$x_{1}=\frac {6 + 2}{2}=4,$??$x_{2}=\frac {6 - 2}{2}=2。$?
解:將方程?$1 - t^2=2t(2t - 1)$?展開并化為一般式:
?$1 - t^2=4t^2-2t,$?即?$5t^2-2t - 1 = 0,$?
其中?$a = 5,$??$b = -2,$??$c = -1,$?
?$b^2-4ac=(-2)^2-4×5×(-1)=4 + 20 = 24。$?
則?$t=\frac {-(-2)\pm \sqrt {24}}{2×5}=\frac {2\pm 2\sqrt {6}}{10}=\frac {1\pm \sqrt {6}}{5},$?
所以?$t_{1}=\frac {1+\sqrt {6}}{5},$??$t_{2}=\frac {1-\sqrt {6}}{5}。$?
解:根據(jù)題意,得$(3m^{2}+4m - 3)+(-m^{2}+m - 30)=0,$
即$2m^{2}+5m - 33 = 0,$其中$a = 2,$$b = 5,$$c = -33,$$b^{2}-4ac=5^{2}-4×2×(-33)=25 + 264 = 289。$
則$m=\frac{-5\pm\sqrt{289}}{2×2}=\frac{-5\pm17}{4},$
所以$m_{1}=\frac{-5 + 17}{4}=3,$$m_{2}=\frac{-5 - 17}{4}=-\frac{11}{2}。$
解:一元二次方程?$x^2-11x + 30 = 0,$?
其中?$a = 1,$??$b = -11,$??$c = 30,$??$b^2-4ac=(-11)^2-4×1×30 = 121 - 120 = 1。$?
則?$x=\frac {-(-11)\pm \sqrt {1}}{2×1}=\frac {11\pm 1}{2},$?所以?$x_{1}=6,$??$x_{2}=5。$?
?$ $?當(dāng)?shù)妊切?$ABC$?的底邊長(zhǎng)為?$5、$?腰長(zhǎng)為?$6$?時(shí),底邊上的高
?$h=\sqrt {6^2-(\frac {5}{2})^2}=\sqrt {36-\frac {25}{4}}=\sqrt {\frac {144 - 25}{4}}=\sqrt {\frac {119}{4}}=\frac {\sqrt {119}}{2},$?
面積?$S=\frac {1}{2}×5×\frac {\sqrt {119}}{2}=\frac {5\sqrt {119}}{4};$?
?$ $?當(dāng)?shù)妊切?$ABC$?的底邊長(zhǎng)為?$6、$?腰長(zhǎng)為?$5$?時(shí),底邊上的高
?$h=\sqrt {5^2-(\frac {6}{2})^2}=\sqrt {25 - 9}=\sqrt {16}=4,$?
面積?$S=\frac {1}{2}×6×4 = 12。$?
綜上所述,?$\triangle ABC$?的面積為?$\frac {5\sqrt {119}}{4}$?或?$12。$?