解:(1)因?yàn)檎壤瘮?shù)$y = kx(k\neq0)$與反比例函數(shù)$y=\frac{m}{x}(m\neq0)$的圖象關(guān)于原點(diǎn)對(duì)稱,$A$的橫坐標(biāo)為$-4,$則$B$的橫坐標(biāo)為$4,$又$B$的縱坐標(biāo)為$-6,$所以$m = 4\times(-6)=-24,$反比例函數(shù)表達(dá)式為$y =-\frac{24}{x}。$
(2)由圖象可知,不等式$kx\lt\frac{m}{x}$的解集為$-4\lt x\lt0$或$x\gt4。$
(3)設(shè)直線$AB$的表達(dá)式為$y = kx,$把$A(-4,6)$代入得$6=-4k,$$k =-\frac{3}{2},$所以直線$AB$的表達(dá)式為$y =-\frac{3}{2}x。$
設(shè)直線$CD$的表達(dá)式為$y =-\frac{3}{2}x + n,$聯(lián)立$\begin{cases}y =-\frac{3}{2}x + n\\y =-\frac{24}{x}\end{cases},$得$-\frac{3}{2}x + n=-\frac{24}{x},$$3x^{2}-2nx - 48 = 0。$
設(shè)$C(x_1,y_1),$$D(x_2,y_2),$則$x_1 + x_2=\frac{2n}{3},$$x_1x_2=-16。$
$S_{\triangle OBD}=S_{\triangle ODF}+S_{\triangle OBF},$
令$y =-\frac{3}{2}x + n$中$x = 0,$得$y = n,$即$E(0,n);$令$y = 0,$得$x=\frac{2n}{3},$即$F(\frac{2n}{3},0)。$
$S_{\triangle OBD}=\frac{1}{2}\times\frac{2n}{3}\times6 = 20,$
$2n = 20,$
解得$n = 10,$所以直線$CD$的表達(dá)式為$y =-\frac{3}{2}x + 10。$