解:(1)$y = mx^{2}-2mx + n=m(x - 1)^{2}+n - m,$所以頂點$A(1,n - m),$$D(0,n)。$
設(shè)直線$AD$的表達式為$y = kx + b,$把$A(1,n - m),$$D(0,n)$代入得:
$\begin{cases}k + b=n - m\\b = n\end{cases},$
解得$\begin{cases}k=-m\\b = n\end{cases},$所以直線$AD$的表達式為$y=-mx + n。$
令$y = 0,$則$-mx + n = 0,$$x=\frac{n}{m},$所以$E(\frac{n}{m},0)。$
因為$S_{\triangle DEC}:S_{\triangle AEC}=3:4,$所以$\frac{DE}{AE}=\frac{3}{4},$則$\frac{OE}{OA}=\frac{3}{1},$$OA = 1,$所以$OE = 3,$又因為$m\lt0,$所以$\frac{n}{m}=-3,$即$E(-3,0)。$
(2)設(shè)$B(x_1,0),$$C(x_2,0),$由韋達定理得$x_1 + x_2 = 2,$$x_1x_2=\frac{n}{m}。$
$AC^{2}=(x_2 - 1)^{2}+(n - m)^{2},$$AE^{2}=(1 + 3)^{2}+(n - m)^{2}=16+(n - m)^{2},$$CE^{2}=(x_2 + 3)^{2}。$
當(dāng)$\angle AEC = 90^{\circ}$時,$AE^{2}+CE^{2}=AC^{2},$不成立。
當(dāng)$\angle EAC = 90^{\circ}$時,$AE^{2}+AC^{2}=CE^{2},$
因為$E(-3,0),$$A(1,n - m),$$C(x_2,0),$$x_1 + x_2 = 2,$$x_1x_2=\frac{n}{m},$且$\frac{n}{m}=-3,$
可得$n=\frac{3\sqrt{2}}{2},$$m=-\frac{\sqrt{2}}{2},$此時二次函數(shù)表達式為$y =-\frac{\sqrt{2}}{2}x^{2}+\sqrt{2}x+\frac{3\sqrt{2}}{2}。$
當(dāng)$\angle ACE = 90^{\circ}$時,$AC^{2}+CE^{2}=AE^{2},$不成立。
所以$\triangle AEC$能是直角三角形,$y =-\frac{\sqrt{2}}{2}x^{2}+\sqrt{2}x+\frac{3\sqrt{2}}{2}。$