亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第47頁

第47頁

信息發(fā)布者:
解:(1)解方程$x^{2}-4x - 12 = 0,$
因式分解得$(x - 6)(x + 2)=0,$
則$x - 6 = 0$或$x + 2 = 0,$
解得$x_1 = 6,$$x_2=-2。$
因?yàn)辄c(diǎn)$A$在點(diǎn)$B$的左側(cè),所以$A(-2,0),$$B(6,0)。$
把$A(-2,0),$$B(6,0)$代入$y = ax^{2}+bx + 6$得:
$\begin{cases}4a-2b + 6 = 0\\36a+6b + 6 = 0\end{cases},$
由$4a-2b + 6 = 0$可得$2b=4a + 6,$即$b = 2a+3,$
將$b = 2a+3$代入$36a+6b + 6 = 0$得:
$36a+6(2a + 3)+6 = 0,$
$36a+12a+18 + 6 = 0,$
$48a=-24,$
解得$a=-\frac{1}{2},$
則$b = 2\times(-\frac{1}{2})+3=2,$
所以二次函數(shù)表達(dá)式為$y =-\frac{1}{2}x^{2}+2x + 6。$
對(duì)于二次函數(shù)$y =-\frac{1}{2}x^{2}+2x + 6,$其對(duì)稱軸為$x=-\frac{2a}=-\frac{2}{2\times(-\frac{1}{2})}=2,$
當(dāng)$x = 2$時(shí),$y=-\frac{1}{2}\times2^{2}+2\times2 + 6=8,$所以頂點(diǎn)坐標(biāo)為$(2,8)。$
(2)設(shè)直線$BC$的表達(dá)式為$y = kx + c,$把$B(6,0),$$C(0,6)$代入得:
$\begin{cases}6k + c = 0\\c = 6\end{cases},$
解得$\begin{cases}k=-1\\c = 6\end{cases},$所以直線$BC$的表達(dá)式為$y=-x + 6。$
因?yàn)?PQ// AC,$設(shè)直線$PQ$的表達(dá)式為$y = k_1x + b_1,$直線$AC$的斜率$k_{AC}=\frac{6 - 0}{0+2}=3,$所以$k_1 = 3,$則直線$PQ$的表達(dá)式為$y = 3x + b_1。$
設(shè)$P(t,0)(0\lt t\lt6),$把$P(t,0)$代入$y = 3x + b_1$得$0 = 3t + b_1,$$b_1=-3t,$所以直線$PQ$的表達(dá)式為$y = 3x-3t。$
聯(lián)立$\begin{cases}y = 3x-3t\\y=-x + 6\end{cases},$解得$\begin{cases}x=\frac{3}{2}+\frac{3t}{4}\\y=\frac{9}{2}-\frac{3t}{4}\end{cases},$所以$Q(\frac{3}{2}+\frac{3t}{4},\frac{9}{2}-\frac{3t}{4})。$
$S_{\triangle CPQ}=S_{\triangle BCP}-S_{\triangle BPQ},$
$S_{\triangle BCP}=\frac{1}{2}\times BP\times OC=\frac{1}{2}\times(6 - t)\times6 = 3(6 - t),$
$S_{\triangle BPQ}=\frac{1}{2}\times BP\times y_Q=\frac{1}{2}\times(6 - t)\times(\frac{9}{2}-\frac{3t}{4}),$
則$S_{\triangle CPQ}=3(6 - t)-\frac{1}{2}\times(6 - t)\times(\frac{9}{2}-\frac{3t}{4})=(6 - t)(3-\frac{9}{4}+\frac{3t}{8})=(6 - t)(\frac{3}{4}+\frac{3t}{8})=-\frac{3}{8}t^{2}+\frac{3}{4}t+\frac{9}{2}。$
對(duì)于二次函數(shù)$S_{\triangle CPQ}=-\frac{3}{8}t^{2}+\frac{3}{4}t+\frac{9}{2},$其對(duì)稱軸為$t =-\frac{\frac{3}{4}}{2\times(-\frac{3}{8})}=1,$因?yàn)槎雾?xiàng)系數(shù)$-\frac{3}{8}\lt0,$所以當(dāng)$t = 2$時(shí),$S_{\triangle CPQ}$最大,此時(shí)$P(2,0)。$
B
A
$(0,-3),$$(2,-3),$$(\sqrt{7}+1,3),$$(-\sqrt{7}+1,3)$