$解:?(1)?由題意?AB=\sqrt {AC^2+BC^2}=\sqrt {13}?$
$∴?sin A=\frac {BC}{AB}=\frac {3\sqrt {13}}{13},??cos B=\frac {BC}{AB}=\frac {3\sqrt {13}}{13}?$
$?(2)cos A=\frac {AC}{AB}=\frac {2\sqrt {13}}{13},??sin B=\frac {AC}{AB}=\frac {2\sqrt {13}}{13}?$
$?(3)?發(fā)現(xiàn):?sin A=cos (90°-∠A),??cos A=sin (90°-∠A)?$
$理由:∵?sin A=\frac {∠A的對邊}{斜邊}=\frac ac,??cos B=\frac {∠B的鄰邊}{斜邊}=\frac ac?$
$∴?sin A=cos B=cos (90°-∠A)?$