$解:過點(diǎn)?C?作?CD⊥AB,?垂足為點(diǎn)?D?$
$設(shè)?CD=x\ \mathrm {cm}?$
$在?Rt△ACD?中,∵?CD=x\ \mathrm {cm},??∠A=60°?$
$∴?AD=\frac {CD}{\sqrt 3}=\frac {\sqrt 3}3x\ \mathrm {cm}?$
$在?Rt△BCD?中,∵?∠B=45°?$
$∴?BD=CD=x\ \mathrm {cm}?$
$∵?AB=8\ \mathrm {cm}?$
$∴?\frac {\sqrt 3}3x+x=8?$
$解得?x=12-4\sqrt 3?$
$∴?CD=(12-4\sqrt 3)\ \mathrm {cm}?$
$∴?S_{△ABC}=\frac 12×AB×CD=48-16\sqrt 3≈20.29\ \mathrm {cm^2}?$