$解:延長?AB、??DC?交于點(diǎn)?E?$
$∵?∠B=∠D=90°?$
$∴?∠A+∠BCD=180°?$
$∵?∠BCE+∠BCD=180°?$
$∴?∠A=∠BCE?$
$∴?tanA=tan∠BCE=2?$
$設(shè)?BC=x,?則?BE=2x?$
$在?Rt△BCE?中,∵?BC=x,??BE=2x?$
$∴?CE=\sqrt {BC^2+BE^2}=\sqrt 5x?$
$∵?tanA=\frac {DE}{AD}=2?$
$∴?AD:??DE:??AE=1:??2:??\sqrt 5?$
$∵?DE=2AD,??AD=CD?$
$∴?CE=CD=AD=\sqrt 5x?$
$∵?AB=5,??BE=2x?$
$∴?AE=2x+5?$
$∵?AE=\sqrt 5AD?$
$∴?2x+5=\sqrt 5 · \sqrt 5x?$
$解得?x=\frac 53?$
$∴?BC?的長為?\frac 53?$