$解:?(1)?∵?cos 36°50'=0.8004,??cos 37°=0.7986,??cos A=0.8?$
$∴?36°50'\lt ∠A\lt 37°,??98°\lt ∠ C\lt 98°10'?$
$∴?△ABC?是鈍角三角形$
$? (2) ?如圖,?BD?是邊?AC?上的高,?BD⊥AC,??BD=3,?過點(diǎn)?C?作?CE⊥AB,?垂足為?E?$
$在?Rt △ABD?中,?cos A=\frac {AD}{AB}=\frac {4}{5}?$
$設(shè)?AD=4k,??AB=5k?$
$∴?3^2+(4k)^2=(5k)^2,??k=1?$
$∴?AB=5,??AD=4?$
$在?Rt△ACE?中,?cosA=\frac {AE}{AC}=\frac {4}{5}?$
$設(shè)?AE=4a,??AC=5a?$
$∴?CE=\sqrt{(5a)^2-(4a)^2}=3a?$
$又∵?∠CBE=45°,??∠BEC=90°?$
$∴?BE=CE=3a?$
$∵?BE+AE=AB?$
$∴?3a+4a=5?$
$∴?a=\frac {5}{7}?$
$∴?BE=CE=\frac {15}{7}?$
$∴?BC=\frac {BE}{cos_{45}°}=\frac {15}{7} × \frac {2}{\sqrt 2}=\frac {15\sqrt{2}}{7}?$