亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第21頁

第21頁

信息發(fā)布者:
$解:?(1)?由題意可知?△AEH≌△CFG,??△DHG≌△BFE?$
$∵?AE=AH=x?$
$∴?DH=8-x,??BE=6-x?$
$∴?S=6×8-\frac 12×x^2×2-\frac 12×(8-x)×(6-x)×2=-2x^2+14x?$
$?(2)S=-2(x^2-7x)=-2(x-\frac 72)^2+\frac {49}{2}?$
$∴當(dāng)?x=\frac 72?時,?S?的值最大,為?\frac {49}{2}?$
$解:?(1)M(12,??0),??P(6,??6)?$
$? (2)?設(shè)二次函數(shù)表達式為?y=a(x-6)^2+6?$
$∵函數(shù)?y=a(x-6)^2+6?的圖像經(jīng)過點?(0,??0)?$
$∴?0=a(0-6)^2+6,?即?a=- \frac {1}{6}?$
$∴拋物線相應(yīng)的函數(shù)表達式為?y=-\frac {1}{6} (x-6)^2+6,?$
$即?y=-\frac 16x^2+2x ?$
$?(3)?設(shè)?A(m,??0),?則?B(12-m,??0),??C(12-m,??- \frac {1}{6}\ \mathrm {m^2}+2\ \mathrm {m}),$
$??D(m,??- \frac {1}{6}\ \mathrm {m^2} +2\ \mathrm {m})?$
$∴“支撐架”總長?AD+DC+CB= (- \frac {1}{6}\ \mathrm {m^2}+2m)+(12-2m) +(- \frac {1}{6}\ \mathrm {m^2}+2m )?$
$? =- \frac {1}{3}\ \mathrm {m^2}+2m+12=- \frac {1}{3} (m-3)^2+15?$
∵此二次函數(shù)的圖像開口向下
$∴當(dāng)?m=3\ \mathrm {m} ?時,?AD+DC+CB?有最大值為?15\ \mathrm {m}?$

$解:?(1)?當(dāng)?0<x≤10?時,?y=(300-200)×x=100x?$
$當(dāng)?10<x≤30?時,?y=[300-3(x-10)-200]×x=-3x^2+130x?$
$∴?y?與?x?之間的函數(shù)表達式為?y=\begin{cases}{100x(0<x≤10,且x為整數(shù))}\\{-3x^2+130x(10<x≤30,且x為整數(shù))}\end{cases}?$
$?(2)?在?0\lt x≤10?時,?y=100x,?當(dāng)?x=10?時,?y?有最大值?1000;?$
$在?10\lt x≤30?時,?y=-3x^2+130x,?當(dāng)?x=21 \frac {2}{3} ?時,?y?取得最大值$
$∵?x?為整數(shù),根據(jù)拋物線的對稱性得?x=22?時,?y?有最大值?1408?$
$∵?1408\gt 1000?$
$∴顧客一次購買?22?件時,該網(wǎng)店從中獲利最多$