$?解:由題意得, AD=BC=6 , AB=CD=3 , AE=t, BE=3-t ,?$
$?BF=2t, CF=6-2t?$
$?S= S_{矩形ABCD}-S_{△ADE}-S_{△BEF}-S_{△DFC}?$
$?=3×6-\frac {1}{2}×t×6-\frac {1}{2}×(3-t)×2t-\frac {1}{2}×(6-2t)×3?$
$?= t2-3t+9?$
$?所以△DEF的面積S與運(yùn)動(dòng)時(shí)間之間的函數(shù)表達(dá)式為?$
$?S= t2- 3t+9?$
$?因?yàn)镾= t2-3t+9=(t-\frac {3}{2})2+\frac {27}{4}?$
$?所以當(dāng)t=\frac {3}{2}時(shí),△DEF的面積S取得最小值。?$