$解:(1)∵四邊形PQMN是矩形,$
$∴∠Q=∠P=90°,$
$∵在Rt△ABQ中,∠ABQ=60°,AB=5.4\mathrm {m},$
$∴AQ=AB·sin∠ABQ=\frac{27\sqrt{3}}{10}(\mathrm {m}),∠QAB=30°.$
$∵四邊形ABCD是矩形,$
$∴AD=BC,∠BAD=∠BCD=∠ABC=∠BCE=90°,$
$∴∠CBE=30°,$
$∴BC=\frac{CE}{tan∠CBE}=\frac{8\sqrt{3}}{5}(\mathrm {m}),$
$∴AD=\frac{8\sqrt{3}}{5}\ \mathrm {m}.$
$∵∠PAD=180°-30°-90°=60°,$
$∴AP=AD×cos∠PAD=\frac{4\sqrt{3}}{5}(\mathrm {m}),$
$∴PQ=AP+AQ=\frac{7\sqrt{3}}{2}(\mathrm {m})$
$∴PQ的長為\frac{7\sqrt{3}}{2}\mathrm {m}$