$解:?\frac {BG'}{G'E}=\frac {AG'}{G'D}=2,?點?G ?與?G'?重合$
$連接?ED?$
$∵?BE、??AD?是?△ABC?的中線$
$∴?DE?是?△ABC?的中位線$
$∴?DE//AB,??DE :?? AB=1 :?? 2?$
$∵?DE//AB?$
$∴?∠EDG'=∠G'AB,??∠DEG'=∠G'BA?$
$∴?△EDG'∽△BAG'?$
$∴?\frac {BG'}{G'E}=\frac {AG'}{G'D}=2?$
$∴?G'E=\frac {1}{2}BG'?$
$∴點?G ?與點?G'?重合$