$解:?(3)?點?C?關(guān)于?x?軸的對稱點為?C',?則?C'(0,??2)?$
$連接?C'D?交?x?軸于點?M?$
$設(shè)經(jīng)過點?C'、??D?的一次函數(shù)表達式為?y=kx+b?$
$將點代入得?\begin{cases}{b=2 } \\{\dfrac {3}{2}k+b=-\dfrac {25}{8}} \end{cases}?\ \ \ \ \ 解得?\begin{cases}{k=-\dfrac {41}{12}}\\{b=2}\end{cases}?$
$∴一次函數(shù)表達式為?y= -\frac {41}{12}x+2?$
$令?y=0,??x=\frac {24}{41}?$
$∴?m=\frac {24}{41}?$