$解:過點??E??作??EF//OB ,??與??x??軸交于點??F ,??$
$設直線??CD??的解析式為??y= mx + n.??$
$因為點??C??坐標為??(0 , 4),??點??D??坐標為??(4 , 0)??$
$直線??CD??的解析式為??y=-x +4??$
$因為點??A??坐標為??(-3 , 0) ??$
$所以??AO=3??$
$因為??AB:BE=3: 1, EF//OB ??$
$所以??AO: OF=AB: BE=3 : 1??$
$因為??AO=3??$
$所以??OF=1??$
$所以點??E??的橫坐標為??1??$
$因為點??E??在直線??y= -x+4??$
$所以??E(1 , 3)??$
$將??A(-3, 0), E(1, 3)??代入??y= kx+b??中,得$
$??\begin{cases}{0=-3k+b }\\{3=k+b} \end{cases}??$
$解得??k=\frac {3}{4},b=\frac {9}{4}??$
$??k??的值為??\frac {3}{4},???? b??的值為??\frac {9}{4}??$