$解:???? (1)????由題意得,$
$???? \begin{cases}{-\dfrac {-2}{2a}=1 }\\{a-2+c=-4} \end{cases}????$
$ 解得????a=1,????????c=-3????$
$ 所以二次函數(shù)的表達(dá)式為????y=x2- 2x- 3 ????$
$???? (2)????因?yàn)槎魏瘮?shù)????y=x2-2x-3????的圖像與????y????軸交于點(diǎn)????C ,????$
$ 與????x????軸正半軸交于點(diǎn)????B????$
$ 所以????C(0,????????-3),????????B(3,????????0)????$
$ 設(shè)直線????AC????的解析式為????y= kx+b????$
$ 將????A(1,???????? -4),???????? C(0,???????? -3)????代入,$
$ 得????\begin{cases}{-4=k+b }\\{-3=b} \end{cases}????$
$ 解得????k=-1,????????b=-3????$
$ 所以直線????AC????的解析式為????y= -x- 3????$
$ 同理可得,直線????AB????的解析式為????y= 2x- 6????$
$ 設(shè)點(diǎn)????P????坐標(biāo)為????(t ,???????? -t-3) ,????此時(shí)四邊形????OPEF????的面積為????S????$
$ 因?yàn)????P(t,???????? -t-3) ,???????? PE//x????軸$
$ 所以點(diǎn)????E????的縱坐標(biāo)為????-t-3????$
$ 因?yàn)辄c(diǎn)????E????在直線????AB????上$
$所以????-t-3= 2x-6????$
$ 解得,???? x=\frac {-t+6}{2}????$
$ 所以????E(\frac {-t+3}{2},????????-t-3)????$
$ 所以????S=\frac {1}{2}×(t+3)×(\frac {-t+3}{2}+\frac {-t+3}{2}-t)????$
$???? = -t2-\frac {3}{2}t+\frac {9}{2}????$
$???? =-(t+\frac {3}{4})2+\frac {81}{16}????$
$ 所以當(dāng)????t= -\frac {3}{4}????時(shí),四邊形????OPEF????的面積取最大值,$
$ 最大值為????\frac {81}{16}.????此時(shí)點(diǎn)????P????的坐標(biāo)為????(-\frac {3}{4} ,????????-\frac {9}{4})????$