$解:∵(x-3)(x+1)(x+7)=x^{3}+5x^{2}-17x-21$
$∴去分母得x+7-k(x- 3)=x+1$
$解得x=\frac{6+3k}{k}$
$∵方程\frac{1}{(x-3)(x+1)}-\frac{k}{(x+1)(x+7)}=\frac{x+1}{x^{3}+5x^{2}-17x-21}無解$
$∴k=0或x=-1或3或-7$
$當(dāng)x=-1時,\frac{6+3k}{k}=-1,解得k=-\frac{3}{2},經(jīng)檢驗符合要求;$
$當(dāng)x=3時,\frac{6+3k}{k}=3,方程無解;$
$當(dāng)x=-7時,\frac{6+3k}{k}=-7,解得k=-\frac{3}{5},經(jīng)檢驗符合要求;$
$當(dāng)k=0時,方程x+7-k(x-3)=x+1無解,則原方程無解$
$∴k的值為-\frac{3}{2}或-\frac{3}{5}或0$