$解:(2)過(guò)點(diǎn)C作CE⊥AB,垂足為E. $
$∵ OC= \frac {1}{2}OB,OB=5,$
$∴ BC= \frac {3}{2}OB=\frac {15}{2}$
$∵ OD⊥AB,CE⊥AB.$
$∴ OD//CE,$
$∴ \frac {OB}{BC} = \frac {BD}{BE} ,$
$∴\frac {2}{3} = \frac {4}{BE} ,$
$解得BE=6,$
$∴ AE=AB-BE=2,$
$∴ 在Rt△BCE中,$
$CE= \sqrt{BC2-BE2} = \frac {9}{2} ,$
$∴ 在Rt△ACE中,$
$tan ∠BAC= \frac {CE}{AE} = \frac {9}{4} ,$
$∴ ∠BAC的正切值為 \frac {9}{4}$